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Predictive microbiology represents a  special-
ized scientific discipline employing mathematical 
models and computational tools to predict how 
microorganisms grow and survive in various envi-
ronments, in particular in food [1]. This approach 
allows researchers, food producers and regulatory 
agencies to pro-actively evaluate potential hazards 
associated with microbial presence and activity, 
facilitating informed decision-making on critical 
aspects such as food safety, quality maintenance 
and shelf-life determination.

By advancing our understanding of micro-
bial behaviour, predictive microbiology supports 
the development of food safety protocols and 
enhances quality assurance practices [2]. Uti-
lizing mathematical models and computation-
al tools, this field provides the food industry 

with data-driven decision-making capabilities, 
ensuring consumer safety and satisfaction. The 
implementation of predictive microbiology has 
significantly supported the industry’s ability to 
predict and manage shelf-life of food products, 
leading to improvement of food safety and quality 
standards. Researchers gained useful insights into 
the complex dynamics of microbial growth in food 
products through predictive models [3]. These 
models are instrumental in assessing risks asso
ciated with microbial contamination and inform-
ing strategies for food preservation, storage and 
distribution [4]. Furthermore, application of pre-
dictive microbiology has enabled formulation of 
effective methodologies to extend the shelf-life of 
food products, thereby reducing food waste while 
maintaining consumer health and satisfaction [5].
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crucial in assessing microbial growth or survival, 
were key predictors. The models’ parameters 
were finely tuned using nested cross-validation. 
The evaluation, based on R2 and RMSE, revealed 
strong predictive capabilities for all methods, with 
R2 values ranging from 0.931 to 0.949 and RMSE 
values ranging from 0.597 to 0.692.

Monte Carlo simulation is a  computational 
technique used to understand the impact of un-
certainty and variability in various systems or 
models. It involves running numerous simulations 
by assigning random values to uncertain variables 
within a  model to analyse the range of possible 
outcomes. By performing these iterations, Monte 
Carlo simulations offer insights into the probabil-
ity distribution of different results, helping in deci-
sion-making and risk assessment across fields like 
finance, engineering or physics [16, 17].

The objective and novelty of this study was to 
demonstrate that the two-stage method, combin-
ing machine learning with the Baranyi model, 
offers enhanced robustness in predicting micro-
bial growth behaviour. The effectiveness of this 
approach was validated using Monte Carlo simula-
tions aiming to conduct a comprehensive compari-
son of robustness of machine learning-assisted and 
traditional modelling approaches. Both modelling 
methods were subjected to varying conditions 
of variability and uncertainty through 10, 50 and 
500  normal random simulations. The perform-
ance differences were evaluated and highlighted, 
ultimately determining which approach provides 
more reliable and accurate predictions of micro-
bial behaviour.

Materials and methods

Microbiological analysis
Growth data of Pseudomonas spp. were 

gathered from a  previously published study on 
the growth of the microorganism on button mush-
rooms at various constant temperatures (4, 12, 
20 and 28 °C) [18]. The experimental process in-
volved obtaining white button mushrooms from 
a  specific source, ensuring the mushrooms were 
undamaged and immediately transporting them 
to a  laboratory at 4  °C, representing industrial 
storage practices. The mushrooms were placed in 
trays without additional packaging material and 
subjected to controlled temperature and humid-
ity conditions. The chambers maintained precise 
temperature and humidity levels while record-
ing data every 15 min using a  data logger. For 
non-constant temperature conditions, dynamic 
temperature changes were introduced. Microbio-

A  two-step modelling approach, often 
referred to as a two-stage or dual-stage modelling 
approach, involves using two separate modelling 
techniques or stages to analyse a complex problem 
or a  dataset [6–8]. Each stage serves a  specific 
purpose and builds upon the results or insights 
from the previous stage. The one-step modelling 
approach, also known as a  single-stage modelling 
approach, involves using a  single comprehen-
sive model to analyse a dataset [9, 10]. Instead of 
breaking down the analysis into multiple stages, 
as done in the two-step approach, all relevant 
variables and relationships are incorporated 
into a  single model. This approach has its own 
set of advantages, depending on the nature of 
the problem and the goals of the analysis. In this 
study, one-step modelling approach was followed 
to compare the robustness of machine learning-
assisted and traditional modelling approaches in 
describing microbial growth behaviour [11].

In the field of predictive food microbiology, 
machine learning techniques have gained sig-
nificant interest and attention [12]. By employing 
data-driven algorithms, these approaches con-
struct models capable of predicting microbial 
growth, spoilage and safety in food items. Machine 
learning methods hold the promise of modelling 
complicated connections among diverse factors 
that influence microbial behaviour, resulting in en-
hanced precision in predictions and sustained food 
safety measures [13].

Yildirim-Yalcin et al. [14] aimed to create 
a  predictive tool using machine learning-based 
regression models to predict the growth of total 
mesophilic bacteria in spinach. They compared 
these models with conventional ones like the 
modified Gompertz, Baranyi and Huang models, 
evaluating them based on statistical measures. 
The results revealed that machine learning models 
achieved higher predictive accuracy, with a  mini-
mum coefficient of determination (R2) of 0.960 
and a maximum root mean square error (RMSE) 
of 0.154. This accuracy suggested their potential as 
credible alternatives to traditional methods in pre-
dicting the growth of total mesophilic bacteria.

Yücel and Tarlak [15] aimed to create ma-
chine learning-based regression methods: deci-
sion tree regression (DTR), generalized additive 
model regression (GAMR) and random forest 
regression (RFR) to predict bacterial populations 
in beef. They used a  dataset from the ComBase 
database (Tasmania Institute of Agriculture, 
Tasmania, Australia), containing 2 654 data points 
for Listeria monocytogenes, Escherichia coli, and 
Pseudomonas  spp. in beef. Factors like tem-
perature, salt content, water activity and acidity, 
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logical data were collected to simulate storage, 
delivery and retail conditions. Sampling involved 
weighing and homogenizing mushrooms, followed 
by dilutions and enumeration of Pseudomonas spp. 
using specific culture media and incubation condi-
tions. The study analysed a total of 297 mushroom 
trays across three independent batches, evaluating 
Pseudomonas spp. counts at various time points 
up to 240 h for each storage temperature. The re-
sults were reported as average logarithm of colony 
forming units per gram with standard error for 
each sampling point.

Modelling
The study’s modelling part was divided into 

two sections (Fig. 1). The first section employed 
a traditional modelling approach, while the second 
section used a  machine learning-assisted model-
ling approach. The robustness of both approaches 
was evaluated using a  Monte Carlo simulation, 
where small perturbations were randomly added 
to the measurements to mimic measurement 
errors and microbial variability. For the traditional 
method, Baranyi model was applied to the new da-
taset generated by Monte Carlo simulation. The 
proposed method involved first applying machine 
learning and then using the resulting predictions 
as input to Baranyi model. In other words, the 
new dataset was fitted using the machine learn-
ing approach and these results were subsequently 
fed into the Baranyi model. The original data were 
gathered from a  previously published study on 
the growth of Pseudomonas spp. on button mush-
rooms at various constant temperatures (4, 12, 
20 and 28 °C) [18]. Monte Carlo simulation was 
then performed for 10, 50 and 500 simulated data 
with standard deviation of ± 0.25 log CFU·g-1 in 
Matlab 8.3.0.532 (R2014a) software (MathWorks, 
Natick, Massachusetts, USA) (Fig. 2).

Static model 
In comparing machine learning and 

traditional modelling techniques, there are nota-
ble differences in their approaches to predicting 

First section

Second section

Traditional modelling

Machine learning-assisted traditional modelling

Noise and uncertainty

Machine learning

Original data

Noise and uncertainty

Baranyi model

Comparison Validation

Baranyi model

Fig 1. Flow chart of the steps followed in the current study.

A

0

20

40

60

80

100

120

140

160

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Fr
eq

ue
nc

y 
nu

m
b

er

Noise [log CFU·g-1]
B

0

100

200

300

400

500

600

700

800

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Fr
eq

ue
nc

y 
nu

m
b

er

Noise [log CFU·g-1]

C

0

1000

2000

3000

4000

5000

6000

7000

8000

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Fr
eq

ue
nc

y 
nu

m
b

er

Noise [log CFU·g-1]

Fig. 2. Histograms of Monte Carlo simulations for 
uncertainty.

A  – 10 times simulations, B – 50 times simulations, C – 
500 times simulations.
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the behaviour of microorganisms and estimating 
the shelf life of food products [19]. Traditional 
methods rely on established mathematical models 
and computational techniques, while machine 
learning utilizes algorithms to identify patterns 
and generate predictions based on data [20]. 
The strength of machine learning lies in its abil-
ity to handle complex and non-linear relation-
ships effectively, allowing for the analysis of ex-
tensive and diverse datasets. However, it often 
requires substantial amounts of data for training 
and may lack the interpretability inherent in tra-
ditional models. Ttraditional modelling tech-
niques offer more straightforward interpretation, 
often grounded in well-understood biological and 
chemical principles. They may be better suited 
for scenarios with limited data or when interpret-
ability is important. There are numerous machine 
learning regression methods, but Gaussian proc-
ess regression (GPR) method is the most suitable 
regression method to describe the behaviour of 
microorganisms. Therefore, GPR method was em-
ployed as a machine learning regression method.

GPR is characterized by its flexibility, complete 
probabilistic nature and non-parametric Bayesian 
approach. The method involves generating infi-
nite-dimensional normal distributions, ultimately 
resulting in a  multivariate Gaussian distribution. 
GPR builds objective functions by evaluating the 
distances between estimated output probability 
density functions derived from a provided dataset. 
A notable feature of GPR is its ability to maintain 
a high level of certainty in areas where no samples 
exist, even if they are significantly distant from the 
training data.

Baranyi model is the most commonly used pri-
mary model. It is represented by Eq. 1 and Eq. 2 
[21]:

𝑦𝑦(𝑡𝑡) = 𝑦𝑦0 + 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹(𝑡𝑡)− ln(1 +
𝑒𝑒𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹(𝑡𝑡) − 1
𝑒𝑒(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚−𝑦𝑦0)

) 
	
(1)

𝐹𝐹(𝑡𝑡) = 𝑡𝑡 + 1𝜈𝜈 ln(𝑒𝑒
−𝜈𝜈𝑡𝑡 + 𝑒𝑒−𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝜆𝜆 − 𝑒𝑒(−𝜈𝜈𝑡𝑡−𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚𝜆𝜆)) 

	
(2)

where t is time (in hours), y(t) is count of micro-
organisms at time t, y0 is initial count of microor-
ganisms, ymax – maximum count of microorgan-
isms (counts are expressed as natural logarithm of 
colony forming units per gram), µmax is maximum 
specific growth rate of microorganisms (expressed 
as natural logarithm of colony forming units per 
hour), λ is lag phase duration (in hours), ν  is the 
rate of increase of the limiting substrate, assumed 
to be equal to µmax [21].

Secondary models are used to describe the im-
pact of various environmental conditions on the 

parameters of main models. These include tem-
perature, pH, water activity (aw), oxygen avail-
ability and concentration of additives. Secondary 
models are utilized after the growth data had been 
fitted to a primary model. The Ratkowsky model 
is widely used to explain the link between tem-
perature and maximum specific growth rate [22] 
(Eq. 3):

√𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑏𝑏1(𝑇𝑇 − 𝑇𝑇0) 	 (3)

where T is storage temperature (in degrees Cel-
sius), T0 is the theoretical lowest temperature at 
which microbial growth is observable (in degrees 
Celsius), µmax is the maximum specific bacterial 
growth rate (expressed as unit per hour), b1 is the 
regression coefficient.

Additionally, lag phase duration (λ) is defined 
as a  function of µmax with respect to temperature 
using Eq. 4 [23]:

𝜆𝜆 = 𝑏𝑏2
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇)

 	 (4)

where b2 is regression coefficient, µmax(T) is the 
function of temperature, which leads λ to be de-
fined as a function of storage temperature.

Determination of each parameter involved 
utilization of the NonLinearModel command 
in Matlab 8.3.0.532 (R2014a) software. This 
command employs the Levenberg Marquardt 
algorithm. In the non-linear regression process, 
selecting appropriate initial values is a crucial step 
to accurately estimate the parameters. For the pa-
rameters y0 and ymax, the minimum and maximum 
counts of bacterial populations across the entire 
temperature range were chosen as starting values, 
respectively. In the case of parameters b1, b2 and 
T0, random selection of starting points might re-
sult in the estimation of parameters converging to 
local optima. To address this, the starting points 
for these parameters were deliberately chosen 
using the ga command from the Global Optimi-
zation Toolbox in Matlab. Following a  successful 
iteration process in the non-linear regression pro-
cedure, global optimum values for the parameters 
were ultimately obtained.

Dynamic model
The prediction of the microbial growth under 

non-isothermal conditions was carried out using 
Eq. 5 and Eq. 6 as described by Baranyi and 
Roberts [21]:

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡 =

1
1 + 𝑒𝑒−𝑄𝑄(𝑡𝑡) 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇(𝑡𝑡))[1− 𝑒𝑒(𝑦𝑦(𝑡𝑡)−𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚)] 

	
(5)

𝑑𝑑𝑄𝑄
𝑑𝑑𝑡𝑡 = 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇(𝑡𝑡)) 

	
(6)
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The initial conditions to solve Eq. 5 and Eq. 6 
are given in Eq. 7 and Eq. 8.

𝑦𝑦(0) = 𝑦𝑦0 	 (7)

𝑄𝑄(0) = ln 𝑞𝑞0 	 (8)

where y0 is the initial counts of the bacterial popu-
lation (expressed as natural logarithm of colony 
forming units per gram) and Q(t) is a variable that 
indicates the physiological state of the bacterial 
population (expressed as natural logarithm of an-
other variable q(t)). 

µmax and λ values were obtained for each iso-
thermal condition using the Baranyi model and 
secondary models.

For each isothermal condition, a dimensionless 
variable (h0) value was then calculated from Eq. 9:

ℎ0 = 𝜇𝜇𝑚𝑚𝑎𝑎𝑎𝑎 × 𝜆𝜆 	 (9)

The average h0 was then used to obtain the 
initial q0 in the differential form of the Baranyi 
model using Eq. 10 [21]. This initial q0 value is cru-
cial for accurately modelling of the lag phase and 
of dynamics of subsequent growth under various 
environmental conditions:

𝑞𝑞0 =
1

𝑒𝑒ℎ0 − 1 	 (10)

Because µmax is a  function of both tempera-
ture and time, µmax values estimated by the appro
priate secondary model were put into the differen-
tial form of the Baranyi model. The temperature 
data recorded with a  data logger were used to 
solve Eq. 5 and Eq. 6. Results were obtained using 
ode45 command, which implements the fourth-
order Runge-Kutta method in the Matlab software 
[24].

Comparison of goodness of fit of the models
RMSE and adjusted coefficient of determi-

nation (R2adj) was used to compare the models’ 
estimate performance using Eq. 11 and Eq. 12 
correspondingly:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑
(𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓)

2

𝑛𝑛 − 𝑠𝑠

𝑛𝑛

𝑖𝑖=1
 	 (11)

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 = 1 − (𝑛𝑛 − 1𝑛𝑛 − 𝑠𝑠) (
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆) 

	
(12)

where xobs represents the experimental counts 
of bacterial population, xfit represents the fit-
ted value, n is the number of experiments, s  is 
the number of model parameters, SSE is the sum 
of squares of errors and SST is the total sum of 
squares.

Statistical analysis
The Wilcoxon signed-rank tests [25, 26] were 

employed to assess the statistical significance of 
differences between machine learning-assisted and 
traditional modelling approaches. The signtest 
command in the statistical tool of Matlab 8.3.0.532 
(R2014a) software was used. Significance in sta-
tistical differences between the two modelling 
approaches was determined when p ≤ 0.05. 

Validation of the models used
Model validation was assessed by considering 

the bias (Bf) and accuracy (Af) factors using Eq. 13 
and Eq. 14, respectively [27]:

𝐵𝐵𝑓𝑓 = 10
∑ log(𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜⁄ )𝑛𝑛
𝑖𝑖=1

𝑛𝑛  	 (13)

𝐴𝐴𝑓𝑓 = 10
∑ |log(𝑥𝑥𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜⁄ )|𝑛𝑛
𝑖𝑖=1

𝑛𝑛  	 (14)

Bf is a  measure of average variation between 
the observed and predicted values. Af measures 
the average difference between the observed and 
predicted values by disregarding whether the 
difference is positive or negative. A value of 1 for 
Bf and Af indicates that there is a perfect agreement 
between all the observed and predicted values. 
Mean deviation (MD) and mean absolute deviation 
(MAD) between the observed and predicted counts 
of microbial populations were also calculated to 
assess the prediction performance of the dynamic 
model as suggested by Le Marc et al. [28].

Results and discussion 

The Pseudomonas spp. counts data derived 
from previously published curves by Tarlak et al. 
[18] related to button mushrooms stored at various 
temperatures (4 °C, 12 °C, 20  °C, and 28  °C) 
were used. These data were utilized for both 
a  one-step modelling approach based on the 
Baranyi model and a  machine learning approach 
employing Gaussian process regression. The 
initial bacterial counts of Pseudomonas spp. 
averaged 7.05 ± 0.14 log CFU·g-1 for all tem-
peratures. The storage duration decreased as 
the temperature increased, ranging from 240  h 
to 84  h (equivalent to 10 days to 3.5  days). Pseu-
domonas spp. counts at the end of storage 
varied between 8.64 ± 0.13 log CFU·g-1 and 
10.76 ± 0.05 log CFU·g-1, depending on the storage 
temperature (Fig. 3). This showed an  increased 
growth potential of Pseudomonas spp. on button 
mushrooms with rising storage temperature.

The capability of the conventional modelling 
approach was assessed through computation of 
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RMSE and R2adj values. For the Baranyi model, 
the obtained RMSE and R2adj values were 0.294 
and 0.950, respectively. In contrast, GPR yielded 
RMSE and R2adj values of 0.151 and 0.991, re-
spectively. This indicated that the fitting capabil-
ity of GPR surpassed that of the traditionally used 
Baranyi model in predicting mushroom spoilage.

The crucial parameters for characterizing the 
growth behaviour of microorganisms in food are 
the maximum specific growth rate (µmax) and 
lag  phase duration (λ). While these parameters 
cannot be directly determined, total counts of 
Pseudomonas spp. can be predicted using the 
developed model based on machine learning 
regression. This limitation becomes apparent 
when compared to traditional modelling methods 
in the field of predictive microbiology [29]. To 
address this limitation, the machine learning re-
gression method was employed to enhance and 
guide the development of a more robust modelling 
approach.

Tab. 1 presents the values of µmax and λ for 
Pseudomonas spp. on button mushrooms ob-
tained from both the Baranyi model and the ma-
chine learning-assisted Baranyi model at each 
storage temperature. The µmax value increased 
from 0.029  h−1 to 0.160  h−1 as the storage tem
perature rose from 4 °C to 28 °C, while λ exhibited 
an opposite trend, decreasing from 58.1 h to 10.5 h 
over the same temperature range. For the Baranyi 
model, the RMSE value was 0.294, and the R2adj 
value was 0.950. In contrast, the machine learn-
ing-assisted Baranyi model showed an  improved 
performance with an RMSE value of 0.273 and 
an R2adj value of 0.956. Additionally, the Wilcoxon 
signed-rank test result was found to be 2.77 × 10-

17, indicating a  significant difference in the pre-
diction capability between the machine learning-
assisted Baranyi model and the traditional Baranyi 
model. These findings collectively suggested that 
the used GPR before the traditional Baranyi 
modelling significantly enhanced the predictive 
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Fig. 3. Observed and predicted growth points.

A – original data for Baranyi model, B – original data for machine learning-assisted with Baranyi model.

Tab. 1. Kinetic parameters and comparison of fitting capability 
of Baranyi model and machine learning-assisted modelling with Baranyi model.

Modelling approach Temperature [°C] λ [h] µmax [h-1] R2adj RMSE

B-1

4 58.1 ± 9.8 0.029 ± 0.002

0.950 0.294
12 27.6 ± 4.6 0.061 ± 0.003

20 16.0 ± 2.7 0.104 ± 0.005

28 10.5 ± 1.8 0.160 ± 0.008

MB-1

4 57.9 ± 10.9 0.026 ± 0.002

0.956 0.273
12 27.2 ± 5.1 0.055 ± 0.003

20 15.8 ± 3.0 0.095 ± 0.004

28 10.3 ± 1.9 0.146 ± 0.007

B-1 – original data for Baranyi model, MB-1 – original data for machine learning-assisted Baranyi model, λ – lag phase duration, 
µmax – maximum specific growth rate, R2adj – adjusted coefficient of determination, RMSE – root mean square error.
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capability of the Baranyi model in describing the 
growth behaviour of Pseudomonas spp. on button 
mushrooms.

The Monte Carlo simulation method was 
employed to generate 10, 50 and 500 datasets. 
The values of µmax and λ for Pseudomonas spp. 
on button mushrooms, derived from both the 
Baranyi model and the machine learning-assisted 
Baranyi model, are presented in Fig. 4 and Fig. 5. 
For the Baranyi model, the RMSE values ranged 
from 0.381 to 0.386, and R2adj values ranged from 
0.919 to 0.916. In contrast, the machine learning-
assisted Baranyi model provided RMSE values 
from 0.297 to 0.307 and R2adj values from 0.947 to 
0.943. Statistical evaluation of the fitting capability 
of the two approaches revealed that the machine 
learning-assisted Baranyi model exhibited supe-
rior fitting capability compared to the traditionally 
used Baranyi model approach (Tab. 2). These re-
sults suggested that the machine learning-assisted 
Baranyi model approach can be reliably utilized 

for estimating Pseudomonas spp. counts on button 
mushrooms.

The crucial step of evaluating the dynamic 
model’s performance is essential for validating 
the reliability of the estimated growth parameters 
of Pseudomonas spp. on button mushrooms. To 
achieve this, the growth data of Pseudomonas spp. 
on button mushrooms exposed to non-isothermal 
storage conditions (24 h at 4 °C and 12 h at 10 °C) 
were compared with the predicted growth data uti-
lizing the differential form of the Baranyi model 
(Fig. 6).

Validation criteria of modelling approaches 
are given in Tab. 3. The machine learning-assisted 
Baranyi model exhibited Bf and Af values of 1.000 
and 1.019, respectively. Both Bf and Af, close to 
one, indicated that the dynamic model utilized in 
this study possessed a  high capability to predict 
the counts of Pseudomonas spp. on button mush-
rooms stored at varying temperatures over time. 
The MD and MAD values for Pseudomonas  spp. 

A B

0.00

0.05

0.10

0.15

0.20

2 6 10 14 18 22 26 30

µ m
ax

[h
−1
]

Temperature [°C]

B-1

B-10

B-50

B-500

Temperature [°C]

0.00

0.05

0.10

0.15

0.20

2 6 10 14 18 22 26 30

µ m
ax

[h
−1

]

Temperature [°C]

MB-1

MB-10

MB-50

MB-500

Temperature [°C]

Fig. 4. Relationship between temperature and maximum specific growth rate.

A – simulated data for the Baranyi model, B – simulated data for machine learning-assisted Baranyi model.

A B

0

10

20

30

40

50

60

2 6 10 14 18 22 26 30

λ
[h

]

Temperature [°C]

B-1

B-10

B-50

B-500

Temperature [°C]

0

10

20

30

40

50

60

2 6 10 14 18 22 26 30

λ
[h

]

Temperature [°C]

MB-1

MB-10

MB-50

MB-500

Temperature [°C]

Fig. 5. Relationship between temperature and lag phase duration.

A – simulated data for the Baranyi model, B – simulated data for machine learning-assisted Baranyi model.



Tarlak, F. – Yücel, Ö.	 J. Food Nutr. Res., Vol. 63, 2024, pp. 273–282

280

Tab. 2. Kinetic parameters and fitting capability of simulated data.

Modelling approach Temperature [°C] µmax [h-1] b R2adj RMSE

Baranyi model

B-10

4 0.029 ± 0.002 58.1 ± 9.8

0.950 0.294
12 0.061 ± 0.003 27.6 ± 4.6

20 0.104 ± 0.005 16.0 ± 27

28 0.160 ± 0.008 10.5 ± 1.8

B-50

4 0.026 ± 0.002 42.0 ± 12.9

0.956 0.273
12 0.055 ± 0.003 18.0 ± 5.4

20 0.095 ± 0.004 9.9 ± 2.9

28 0.146 ± 0.007 6.3 ± 1.9

B-500

4 0.029 ± 0.002 58.1 ± 9.8

0.950 0.294
12 0.061 ± 0.003 27.6 ± 4.6

20 0.104 ± 0.005 16.0 ± 27

28 0.160 ± 0.008 10.5 ± 1.8

Machine learning-assisted Baranyi model

MB-10

4 0.029 ± 0.002 58.1 ± 9.8

0.950 0.294
12 0.061 ± 0.003 27.6 ± 4.6

20 0.104 ± 0.005 16.0 ± 27

28 0.160 ± 0.008 10.5 ± 1.8

MB-50

4 0.026 ± 0.002 42.0 ± 12.9

0.956 0.273
12 0.055 ± 0.003 18.0 ± 5.4

20 0.095 ± 0.004 9.9 ± 2.9

28 0.146 ± 0.007 6.3 ± 1.9

MB-500

4 0.026 ± 0.002 42.0 ± 12.9

0.956 0.273
12 0.055 ± 0.003 18.0 ± 5.4

20 0.095 ± 0.004 9.9 ± 2.9

28 0.146 ± 0.007 6.3 ± 1.9

B – Monte Carlo simulations for 10, 50 and 500 times with Baranyi model, MB – Monte Carlo simulations for 10, 50 and 500 times 
with machine learning-assisted Baranyi model.
µmax – maximum specific growth rate, b – regression coefficient, R2adj – adjusted coefficient of determination, RMSE – root mean 
square error.
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populations were –0.007 log CFU·g-1 and 
0.148 log CFU·g-1, respectively. The MD value 
of –0.007 log CFU·g-1 indicated that, on average, 
the dynamic model slightly overestimated by 
0.007 log CFU·g-1 the observed values, while 
the MAD value of 0.148 log CFU·g-1 suggested 
that, on average, the predicted values differed by 
0.148 log CFU·g-1 (either higher or lower) from 
the observed ones. In comparison, Manthou et al. 
[30] reported an  MD value of –0.10 log CFU·g-1 
and a  MAD value of 0.22 log CFU·g-1 for Pseu-
domonas spp. populations on oyster mushrooms. 
These results collectively indicated that the 
models employed in the present study exhibited 
a  superior predictive capability compared to the 
dynamic model previously developed for micro-
bial contamination of oyster mushrooms. Conse-
quently, the machine learning-assisted modelling 
approach utilized in this study could serve as 
an alternative to traditional modelling approaches 
for determining the number of Pseudomonas spp. 
on mushrooms.

Conclusion

This study demonstrated the significant po-
tential of machine learning-assisted modelling 
approaches, particularly utilizing GPR, in 
advancing our comprehension of microbial 
growth dynamics. The comparison between tradi-
tional modelling methods and machine learning 
techniques, conducted through Monte Carlo 
simulations, revealed that the machine learning 
approach significantly increased the robustness 

of the models. The higher R2adj value and RMSE 
value that were obtained with the machine learn-
ing-assisted approach underscored its superiority 
in accurately capturing the dynamic and complex 
nature of microbial growth, especially in the 
presence of high variation. The validation metrics, 
including bias and accuracy factors, further 
support the reliability of the machine learning-
assisted dynamic model. With a minimal MD and 
MAD, this approach emerges as a highly depend-
able prediction method for describing microbial 
growth behaviour in the realm of predictive food 
microbiology. This study contributed valuable in-
sights to various fields such as microbiology, food 
safety and biotechnology, paving the way for more 
effective and adaptable models in understanding 
and predicting microbial growth.
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