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Lamb has long held a  significant place in 
global culinary traditions [1]. The freshness of 
lamb plays a crucial role in determining its quality. 
High freshness ensures a  tender taste, rich nutri-
tion and retention of more high-quality proteins 
[2]. However, prolonged or improper storage 
reduces the freshness of lamb [3], impacting its 
quality when placed on the market. This, in turn, 
affects the economic interests of stakeholders [4]. 
Hence, there arises a need for a rapid and efficient 
method to assess lamb freshness.

Indicators of lamb meat freshness can be 
divided into three main categories: physical, 
physiological and biochemical. Physical indica-
tors comprise colour, water content and density 
[5]. Recent research on these involved various 
technologies like X-ray, thermal imaging, infrared 
spectroscopy or hyperspectral imaging as effective 

means to characterize lamb meat freshness [6–8]. 
Physiological indicators encompass factors such 
as elasticity, odour and cellular water content [9]. 
Biochemical indicators include protein content 
and enzyme activity. Current techniques used to 
evaluate physiological and biochemical indicators 
of lamb freshness require destruction of samples, 
rendering them unsuitable for assessing fresh-
ness during the sorting processes [10]. In contrast, 
non-destructive methods based on physical pro
perties monitoring offer promise at a good detec-
tion level. However, while parameters like colour, 
moisture content, density and spectral information 
can indicate lamb freshness to some extent [11], 
they do not provide comprehensive understand-
ing of freshness loss stemming from changes in 
microstructure, such as internal cellular and mois-
ture status during aging and deterioration. Conse-
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the moisture and cellular conditions of biologi-
cal tissues [13]. However, when applied to stored 
lamb, the impedance spectral fitting error was 
deemed unacceptable due to the tissue‘s ani-
sotropic microstructure and the presence of 
necrotic tissue. Consequently, this study employed 
impedance selection points to assess lamb meat 
freshness. The primary goal was to develop 
an evaluation model using the EIS selection 
frequency method for non-destructively determin-
ing the freshness of lamb meat.

Materials and methods

Lamb ingredients
Two types of meat were chosen for this study. 

The first, from Maoshan sheep, which hails from 
mainland China and is primarily bred in regions 
like Guangxi, Sichuan and Yunnan. The speci-
mens used were processed by Yunnan Honghe 
Meideng, which is based in Honghe Prefecture, 
Yunnan Province, China. The second meat type 
was from Jianghan sheep, which is a  prevalent 
sheep breed originating from areas such as Hubei, 
Hunan or Henan in mainland China. Known 
for its tender meat with minimal fascial tissue, 
it is a  crucial breed in the region [14]. For fresh-
ness testing, both fresh lamb and naturally aged 
lamb were selected. It is important to note that 
these were of the same breed sourced from iden-
tical lamb lots. Lamb meat, mostly taken from 
leg muscle tissue with minimal fascial tissue and 
no breakage, typically holds a  moisture content 
of 65–70  %. For this study, two pieces of fresh 
lamb, both with approximately 70% moisture con-
tent, were employed – labelled as Experimental 
lamb  I and Experimental lamb  II. Experimental 
lamb I, initially stored at 4  °C and stabilized at 
approximately 25  °C in room temperature con-
ditions, underwent impedance and phase angle 
peak measurements at temperature intervals of 
4 °C, 11 °C, 18 °C and 25 °C (Fig. 1). Meanwhile, 
Experimental lamb  II, subjected to moisture re-
duction via a  dryer at room temperature, repre-
sented the simulated aging process. As lamb ages, 
it undergoes internal changes involving cellular 
rupture, protein disintegration, fat oxidation and 
water loss, leading to a  noticeable decrease in 
freshness compared to freshly obtained lamb [15]. 
Balasubramanian et al. used a customized metal 
oxide-based olfactory sensing system to analyse 
beef tenderloin and used the extracted features 
to develop a  classification model using a  radial-
basis function neural network, which did have 
a  positive impact on improving the classification 

quently, an urgent need exists for a  non-destruc-
tive sorting method that can identify lamb meat 
of high freshness, ultimately benefiting consumers 
looking for the top-quality products.

Zhao et al. [12] applied the basic theory of 
electrical impedance spectroscopy (EIS) to bio-
logical tissues and two commonly used measure-
ment methods, summarized the application of EIS 
technology in fish quality evaluation and conclud-
ed that EIS has the advantages of being fast, non-
destructive, inexpensive, easy to implement and 
saving costs and time. It represents a stable linear 
system, if a  sinusoidal current I(t) of angular fre-
quency (ω) is fed into the system as a disturbance 
signal, the output response V(t) of the system is 
also a sinusoidal voltage of ω. 

EIS can be used to identify the quality cha
racteristics of meat. By measuring the electrical 
impedance response of meat at different frequen-
cies, information related to meat quality, such as 
moisture content, protein content or cell structure 
can be obtained. This information can be used to 
determine the freshness of the meat, the storage 
conditions and the treatment method. Electri-
cal impedance spectroscopy can even be used to 
evaluate the freezing and thawing process of meat. 
Freezing and thawing affect the cellular structure 
and tissue properties of meat, which in turn change 
its electrical impedance response. By monitoring 
changes in electrical impedance over time and fre-
quency, the effect of temperature changes on meat 
quality can be assessed. There should be a corre-
lation between the electrical impedance response 
obtained from EIS measurements and the fresh-
ness index of meat. The correlation between the 
electrical impedance characteristics and freshness 
needs to be determined through experimental 
studies and data analysis. This may involve physi-
cal characteristics related to freshness such as 
moisture content, protein degradation or bacte-
rial contamination. It is important to ensure that 
the selected electrical impedance characteristics 
can accurately and sensitively reflect the changes 
in freshness of meat. To build a  reliable predic-
tive model, a  calibration and validation process 
is required. The calibration phase uses a  series 
of samples of known freshness status to make 
measurements, collect electrical impedance data 
and correlate them with the corresponding fresh-
ness metrics. The performance and accuracy of the 
model is then evaluated using an independent set 
of validation samples. The design and execution of 
the calibration and validation process is critical to 
the applicability of the results. 

This novel technique, EIS, has been used in 
various instances to non-destructively analyse 
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accuracy obtained [16]. To construct a  prediction 
model, 50  samples of lamb were allocated as the 
training set and another 50 as the test set, ensuring 
an equal split between the fresh and aged lamb in 
both sets.

Experimental principle
The lamb’s skeletal muscle, derived from 

selected materials, comprises bundles of 
myofibers, each composed of numerous indi-
vidual myofibers. These myofibers consist of 
myogenic  encased in sarcoplasm. Sequentially, 

these myogenic fibres form a  series of muscle 
segments separated by z-discs. In this model, it is 
assumed that the myoplasm, primarily composed 
of water and proteins, exhibits resistive electrical 
behaviour. Additionally, parallel myosegments 
are also assumed to be resistive. The alternating 
arrangement of myosegments and z-discs contrib-
utes to the capacitive behaviour observed within 
the skeletal muscle fibres [17]. However, these 
simplifications regarding resistive and capacitive 
behaviour are only applicable when concerning 
the muscle fibres direction due to geometric aniso
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Fig. 2. Experimental principle and equivalent circuit diagram.

A – schematic diagram of low and high frequency currents flowing through tissue cells, B – simplified geometric model of 
skeletal muscle fibres, C – model equivalent circuit diagram.
R1 – resistive behaviour of the muscle mass, R2 – resistance of sarcomer, C1 – capacitance resistance of z-disc.
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Fig. 1. Histograms of impedance and phase angle peaks as a function of temperature. 

A – impedance. B – phase angle.
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tropy [18]. The equivalent circuit diagram of this 
model is depicted in Fig. 2.

It is assumed that R1 represents the resistive 
behaviour of the myotome. R2 and C1 in series 
represent alternate myotome segments and z-discs. 
The bioimpedance (Z) of the model muscle can be 
determined as

𝑍𝑍 = 𝑅𝑅1 + 𝑗𝑗𝑗𝑗𝑅𝑅1𝑅𝑅2𝐶𝐶1
1 + 𝑗𝑗𝑗𝑗𝐶𝐶1(𝑅𝑅1 + 𝑅𝑅2)

 	 (1)

where j is the imaginary unit and ω denotes the 
frequency. Therefore, the impedance magnitude is 
shown in Eq. 2.

|𝑍𝑍| = √[𝑅𝑅1 + 𝜔𝜔2𝑅𝑅1𝑅𝑅2𝐶𝐶12(𝑅𝑅1 + 𝑅𝑅2)]2 + (𝜔𝜔𝑅𝑅12𝐶𝐶1)2
1 + 𝜔𝜔2𝐶𝐶12(𝑅𝑅1 + 𝑅𝑅2)2

 	(2)

Muscle contraction leads to shortening of the 
myosegmentum, which decreases the distance 
between z-discs. This increases the capacitance, 
which corresponds to a decrease in reactance. As 
in the passive first-order circuit shown in Fig.  2, 
the impedance amplitude decreases over the 
entire frequency range.

Φ(𝑍𝑍) = − arctan( 𝜔𝜔𝐶𝐶1𝑅𝑅12
𝑅𝑅1 +𝜔𝜔2𝐶𝐶12𝑅𝑅1𝑅𝑅2(𝑅𝑅1 + 𝑅𝑅2)

) 
	
(3)

where F(Z) is the phase angle of the impedance Z.
According to previously given assumptions, 

muscle contraction is associated with an increase 
in C1, which leads to a compression of the phase 
response in the frequency dimension. In the loga-
rithmic frequency representation, this corresponds 
to a shift of the phase response to lower frequen-
cies. This particular behaviour is the theoretical 
basis for the phase effect. The values of R1 and R2 
are also affected by muscle contraction but, based 
on previous measurements, it is assumed that 
these relative changes are less than those of C1.

Impedance measurement
The impedance analyser IM3570 (Hioki, 

Nagano, Japan) was used for data measurement, 
along with the measurement system and material 
samples [19]. In this experiment, the measurement 
accuracy level of our IM3570 sensor was level 0.1 
and the error range was ± 0.5 %. Under this accu-
racy, suitability of the model may be guaranteed. 
To prepare the electrodes for impedance measure-
ments, the clamping fixture adjusts the force while 
the graphene pattern is printed onto the polyimide 
film by a  laser cutter based on a  photothermal 
reaction. This could be confirmed by previous 
studies [20, 21]. Specifically, a  self-designed fork 
finger-type impedance electrode was employed in-
house to enhance signal precision and accuracy, as 
well as to minimize external interference [22]. The 

laser scanning parameters were as follows: single 
scan with 120 mm·s-1 speed, 7.2 W power, 0.02 mm 
line spacing and 8 mm Z-axis spacing.

Before the measurement, short and open circuit 
corrections were conducted. Additionally, a  thick 
slide was added behind the electrode sheet to exert 
pressure on the lamb sample, preventing its detach-
ment from the bench during the measurements. 
The analysed samples  were hind leg meat, uni-
formly shaped into 50 mm × 50 mm sample blocks 
to standardize subsequent electrode measurements. 
Each lamb piece reached the weight of approxi-
mately 4.5  g (with a  controlled error within 5  %). 
The electrode was placed into the central part of 
the lamb, ensuring uniformity and minimizing the 
presence of other tissues and fascia [23].

The electrical parameters assessed were im-
pedance (Z) and phase angle (θ) within a  fre-
quency range of 1–80 kHz, comprising 60 sampling 
points, considering the measurement frequency’s 
polarization sensitivity when below 1  kHz. At 
each frequency point within this range, distinct 
impedance and phase angle values were obtained, 
both differing in magnitude across frequencies. 
These values collectively formed the EIS dataset.

Data analysis model
Statistical software SPSS version 27.0 (IBM, 

Armonk, New York, USA) was used to build 
the predictive model to predict the freshness 
of lamb, involving Fisher’s linear discriminant 
analysis (FLDA) [24]. In contrast to some linear 
and non-linear regression models, such as partial 
least squares regression and least squares support 
vector machines that are used to build the pre-
dictive models, FLDA focuses on maximizing the 
variability between the different categories and 
therefore is better able to distinguish between 
meat samples of different freshness status. 

The principle of FLDA application for binary 
classification problems is the projection of d-di-
mensional features into a  one-dimensional space 
using a d-dimensional vector Φ. For the resulting 
low-dimensional projection, the different classes 
are as separate as possible, while the same class is 
as close as possible. X1 and X2 represent two train-
ing sets from two different classes.

𝑋𝑋1 = (𝑥𝑥11,⋯ , 𝑥𝑥1𝑙𝑙1) 	 (4)

𝑋𝑋2 = (𝑥𝑥21,⋯ , 𝑥𝑥2𝑙𝑙2) 	 (5)

where x1 represents projection of samples, 
number  1 represents the ordinal number of 
the training set to which the sample belongs, l1 
represents the ordinal number of the sample in 
dataset  X1, x2 represents projection of samples, 
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number  2 represents the ordinal number of 
the training set to which the sample belongs, l2 
represents the ordinal number of the sample in 
dataset X2.

The vector Φ is obtained by solving the follow-
ing optimization problem:

max 𝐽𝐽(Φ) =
|𝑚𝑚1 − 𝑚𝑚2|2
𝑆𝑆12 + 𝑆𝑆22

 	 (6)

where m1 and m2 are the projections of means 
X1 and X2, respectively. S12 is the scatter variance 
of the projected samples of class X1 and S22 is 
the scatter variance of the projected samples of 
class X2.

𝑚𝑚1 =
1
𝑙𝑙1
∑ Φ𝑇𝑇𝑥𝑥1𝑗𝑗

𝑙𝑙1

𝑗𝑗=1
 	 (7)

𝑚𝑚2 =
1
𝑙𝑙2
∑ Φ𝑇𝑇𝑥𝑥2𝑗𝑗

𝑙𝑙2

𝑗𝑗=1
 	 (8)

𝑆𝑆12 =∑ (𝑦𝑦1𝑗𝑗 −m1)
2𝑙𝑙1

𝑗𝑗=1
 	 (9)

𝑆𝑆22 =∑ (𝑦𝑦2𝑗𝑗 −m2)
2𝑙𝑙2

𝑗𝑗=1
 	 (10)

𝑦𝑦 = Φ𝑇𝑇𝑥𝑥 	 (11)

where T is mathematical notation for vector 
transpose, y is a variable that projects d-dimen-
sional features into a one-dimensional space using 
a d-dimensional vector Φ.

The objective of maximizing vector J(Φ) is 
to find a  vector that minimizes the within-class 
scattering while maximizing the mean of the 
projections between the classes. Undetermined 
coefficients in the discriminant function were de-
termined using a  large amount of data from the 
training set and calculating the discriminant index 
for the test set. 

FLDA is a classical binary classification method 
for projecting samples onto a  linear discriminant 
axis such that the distance between the similar 
samples is minimized and the distance between the 
dissimilar samples is maximized. In FLDA, there 
exists a  vector optimization method to solve for 
the best discriminant axis. This vector optimiza-
tion method is often referred to as the generalized 
eigenvalue problem. It involves computing the 
eigenvalues and eigenvectors of two matrices, the 
intra-class scatter matrix and the inter-class scatter 
matrix. The intra-class scatter matrix measures the 
degree of dispersion between samples of the same 
class, while the inter-class scatter matrix measures 
the degree of difference between the samples 
of different classes. By solving the generalized 
eigenvalue problem, the optimal discriminant axes 
(eigenvectors) can be obtained, allowing the pro-

jected samples to achieve the best classification 
results. At the same time, an important assump-
tion of FLDA is that the eigenvalues of the sample 
in each category have the same covariance matrix. 

ANOVA can be used to test whether this 
assumption holds true. By comparing the variance 
within and between the categories, it is possible 
to determine, whether the predictive model 
accurately captures the differences between the 
categories, and thus to calculate the adequacy 
of the model. The coefficient of variation (Cv) 
was introduced to compare the dispersion of the 
overall data for the measured parameters [25], 
defined as the ratio of the standard deviation to 
the mean:

  
𝐶𝐶𝐶𝐶 = σ

𝜇𝜇 	 (12)

where σ is standard deviation and µ is mean. 
This method was used to determine Cv 

impedance and phase angle (θ) at 50  frequencies 
in the training set.

In the data obtained above, the amplitude 
and phase angle of low, medium and high fre-
quencies and the quality of the sample meat were 
taken, totalling seven variables. With the proposed 
model, the fitting relationship that exists between 
the freshness of mutton and each variable can be 
found out, and then a  prediction model to pre-
dict the freshness can be built. Since these seven 
variables have different effects on the freshness 
of lamb, one can guess that the more variables in-
volved in the prediction model, the more accurate, 
with less error and more stable the obtained pre-
diction results.

Results and discussion

Environmental immunity test 
To monitor and analyse the lamb freshness 

using electrode-measured parameters, a  ten-day 
standardized experiment tracked the lamb’s aging 
process. Due to its specific nature, the lamb was 
refrigerated. When transitioning the lamb from re-
frigeration to the experiment, gradual changes in 
surface temperature and humidity occurred due 
to room temperature conditions, influencing the 
impedance measurement. To address this phe-
nomenon, the effect of temperature and humidity 
on the electrodes needed study. Moisture content 
decreased in 10% intervals from an initial 70  % 
humidity, resulting in moisture contents of 70 %, 
60 %, 50 % and 40 %. Impedance and phase angle 
peak values for Experimental lamb II across these 
moisture contents were captured (displayed in 
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Fig. 3). As follows from the comparison of imped-
ance and frequency changes due to temperature 
and humidity variations, a  deviation of less than 
0.2% in before-and-after measurements was evi-
dent. It is reasonable to assume, within the margin 
of error, that temperature and humidity altera-
tions minimally affected the measured electrode 
parameters.

Impedance properties of lamb 
Impedance (Z) and phase angle (θ) stand as 

pivotal parameters in EIS. To understand their 
relationship with lamb freshness, impedance and 
phase angle values were determined for individual 
lamb samples (measuring 50 mm × 50 mm sample 
blocks). In Fig. 4A and Fig. 4B, impedance values 
corresponding to various frequency responses are 
displayed. Across the different lamb breeds, within 
the same frequency response range, impedance 
values decreased with rising frequency. It is 
obvious, that the aged lamb exhibited higher im-
pedance compared to fresh lamb. Fig.  4C and 
Fig.  4D illustrate the phase angle trend with fre-
quency; as the frequency increased, the absolute 
value of the phase angle decreased.

Analysing the measured frequencies, they were 
segmented into low, medium and high frequency 
bands – below 1 kHz, 1 kHz to 10 kHz and above 
10 kHz, respectively. Particularly in the low-fre-
quency domain, the absolute values of impedance 
and phase angle were evidently larger for differ-
ently aged lamb compared to the high-frequency 
domain. This discrepancy in the impedance value 
and absolute phase angle size, typically observed 
in the low-frequency domain, serves as a  distin-
guishing index for lamb freshness.

Further analysis involved examination of the 

coefficient of variation for impedance and phase 
angle, aiding in determination of the suitable in-
dependent variables applicable for the predic-
tion model [9]. As is obvious from Fig. 5A and 
Fig.  5B, impedance Cv for aged lamb was lower 
than for fresh lamb and diminished with increas-
ing frequency. As an illustration, at 1 kHz, Cv reg-
istered at 0.633 and 0.234 for Maoshan lamb and 
Jianghan fresh lamb, respectively. As frequency 
climbed to 60 kHz, Cv dropped to a minimum of 
0.563 and 0.208, respectively. The phase angle’s 
Cv followed a similar pattern, as shown in Fig. 5C 
and Fig.  5D. Considering the stability prediction, 
the high-frequency domain appears as a potential 
frequency range for impedance changes. However, 
this finding seems contradictory to the analysis of 
impedance variation across frequencies.

Fisher’s linear discriminant analysis
Upon analysing the single electrode para

meters in both the low and high frequency ranges, 
it is evident that individually they do not serve 
satisfactorily as fitting independent variables to 
meet the criteria for their applicability to discrimi-
nation. While the low-frequency domain shows 
potential in distinguishing lamb freshness, the 
model’s prediction accuracy remains compara
tively low due to high coefficient of variation. 
On the other hand, although the differences in 
impedance and phase angle values in the high-
frequency region are not pronounced, the model 
exhibits a lower coefficient of variation, suggesting 
potentially enhanced prediction accuracy.

Low-frequency current predominantly tra
verses the extracellular fluid, while high-frequency 
current primarily navigates the intracellular fluid. 
This disparity in impedance parameters across 
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A – impedance, B – phase angle.
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A – aged lamb, trend of impedance magnitude with frequency, B – fresh lamb, trend of impedance amplitude with frequency, 
C – aged lamb, trend of phase angle value with frequency, D – fresh lamb, trend of phase angle with frequency.

A B

0.50

0.55

0.60

0.65

0.70

-10000 10000 30000 50000 70000 90000

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Frequency [Hz]

0.50

0.55

0.60

0.65

0.70

0 20000 40000 60000 80000 100000

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Frequency [Hz]

0.20

0.21

0.22

0.23

0.24

0.25

0.26

-10000 10000 30000 50000 70000 90000

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Frequency [Hz]

0.50

0.55

0.60

0.65

0.70

0 20000 40000 60000 80000 100000

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Frequency [Hz]

C D

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

-10000 10000 30000 50000 70000 90000

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Frequency [Hz]

0.50

0.55

0.60

0.65

0.70

0 20000 40000 60000 80000 100000

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Frequency [Hz]

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

-10000 10000 30000 50000 70000 90000

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Frequency [Hz]

0.50

0.55

0.60

0.65

0.70

0 20000 40000 60000 80000 100000

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

Frequency [Hz]

Fig. 5. Coefficient of variation for measurement parameters. 

A – impedance variable coefficient values of aged lamb, B – impedance variable coefficient values of fresh lamb, C – phase angle 
variable coefficient values for aged lamb, D – phase angle variable coefficient values for fresh lamb.



Wang, S. et al.	 J. Food Nutr. Res., published online 2 July 2024

8

the frequencies indicates the diverse lamb tissue 
information. To establish a  more precise fresh-
ness discrimination model, specific frequencies 
across the different domains were selected. One 
frequency from each domain, chosen on the basis 
of coefficient of variation values, was employed 
as the model’s selected frequency. This multi-
electrode parameter model incorporates electrode 
parameters at various frequencies [26], providing 
deeper insights into lamb tissue changes. 

Utilizing the impedance and phase angle values 
from the selected frequencies as independent 
variables, the model underwent discriminant 
analysis during the training (Tab. 1). As the mass 
of lamb may affect the electrode parameter values 
during freshness alterations of a  single 50 mm × 
50 mm piece, the mass at the time of measure-
ment was included as an independent variable, 
maintaining control over the sample’s initial mass 
consistency. For Maoshan lamb, the selected fre-
quencies for independent variables were 1 kHz, 
10 kHz and 60 kHz. FLDA model was employed 
for discriminant analysis. Independent variables 
X1 through X7 were defined, representing low, me-
dium and high frequency impedance values (X1, 
X2, X3) and phase angles (X4, X5, X6), alongside 
the lamb’s current mass (X7). The model under-
went the training and subsequent validation using 
distinct sets of training and validation data.

For the discriminant analysis, impedance 
values, phase angles and sample mass were se-
lected, in a  sequence followed from the discrimi-
nant model’s analytical justification. The outcome 
demonstrated lower accuracy with fewer variables 
and higher accuracy with more variables. This con-
firmed that a  sole electrical parameter or indica-
tor is not a  reliable measure of lamb freshness. 
There was a correlation evident among the various 
selected indicators. The initial analyses aligned 

with the set criteria, particularly when considering 
the accuracy needed to meet the discrimination 
requirements.

Model discussion
The here presented experiments were 

conducted to assess the impact of impedance 
values, phase angles, water content and micro-
morphology on lamb meat during natural 
aging. The obtained findings suggested that 
the developed prediction model, combining 
impedance values, phase angles and changes 
in lamb meat quality at specific frequencies, 
effectively detected and forecasted lamb meat 
freshness. This model considered sufficiently 
alterations in cell water content within the lamb, 
elements that could significantly influence 
sample quality during lamb meat aging, affect-
ing impedance values and phase angles. Present 
study introduced a  novel method for predicting 
lamb meat freshness and offers theoretical insights 
into characterizing lamb meat tissue and cellular 
structures using selected frequencies. There was 
a  correlation established between the impedance 
spectra and lamb meat freshness. 

Although Zhang et al. [4] applied an equiva-
lent circuit modelling approach to measure the 
quality of meat including lamb, its accuracy was 
lower compared to results presented herein, par-
ticularly when dealing with lamb with low water 
content (≤ 45 %). In contrast, exact frequency se-
lection similar to Bera et al. [27] in equivalent cir-
cuits, simplifies the characterization and is some-
what similar in capability. Aging lamb experiences 
shifts in water state, where the impedance value 
correlates with the proportion of combined water. 
The decline in antioxidant enzymes content during 
the lamb aging leads to cell membranes disrup-
tion and a  subsequent decrease in bound tissue 

Tab. 1. Lamb freshness prediction results based on linear discriminant analysis model 
and various input parameters.

No. Independent variable Discriminant function
Accurary 

[%]

1 Impedance, phase angle, mass 0.002X1 + 0.001X2 + 0.001X3 + 0.074X4 + 0.129X5 + 0.420X6 + 0.742X7 + 1.142 94

2 Impedance, phase angle 0.002X1 + 0.001X2 + 0.002X3 + 0.100X4 + 0.120X5 + 0.408X6 + 5.146 87

3 Impedance, mass 0.003X1 – 0.001X2 + 0.007X3 + 0.204X7 – 5.225 82

4 Phase angle, mass 0.263X7 + 0.118X5 + 0.441X6 + 1.278X7 + 18.799 78

5 Phase angle 0.259X4 + 0.140X5 + 0.477X6 + 14.205 75

6 Impedance 0.002X1 – 0.001X2 + 0.007X3 – 4.332 72

X1–X7 were set as the independent variables. X1 – low frequency impedance value, X2 – medium frequency impedance value, 
X3 – high frequency impedance value, X4 – low frequency phase angle, X5 – medium frequency phase angle, X6 – high frequency 
phase angle, X7 – current mass of the sample lamb.



	 Resistance detection of lamb

	 9

water content, exacerbating tissue damage and 
microcrack formation in fresh lamb cells, which 
become denser and larger over time [28]. These 
changes contribute to higher impedance values in 
aged lamb. The interactions between micromor-
phology, water state and impedance are notable 
during the lamb aging [29]. Impedance comprises 
resistance and reactance, where resistance reflects 
water sensitivity and reactance mirrors mor
phology sensitivity. The interaction between the 
water morphology and microcracks impacts both 
impedance and phase angle [30]. Consequently, 
the freshness prediction model based on electri-
cal parameter measurements at specific frequen-
cies effectively predicts lamb freshness in its natu-
ral state. Moreover, the relationship between the 
water micromorphology and impedance supports 
the theoretical basis for lamb freshness evaluation. 

Finally, comparison of the characteristics of the 
here presented method with other, previously de-
veloped methods of meat quality testing, is shown 
in Tab. 2. As is obvious, the flexible impedance 
sensor-based method developed for lamb quality 
detection reveals some portability compared to 
instrumental detection methods. Its simplicity is 
also comparable to other detection methods such 
as colorimetric labelling. In addition, the proposed 
method is less costly and can provide a reference 
for quality inspection in the meat supply chain.

Conclusions

Using flexible impedance electrodes and 
an  electrochemical workstation, the impedance 
values and phase angles of fresh and aged lamb 
were measured in the high, medium and low fre-
quency ranges. At the same time, the quality of the 
lamb meat was assessed, leading to the develop
ment of a  lamb freshness identification model 
that has a strong predictive capability. The appro

priate number of carefully selected variables, sub-
sequently involved in the prediction model, can 
reduce the variability of prediction results and 
improve the accuracy and stability of the discrimi-
nation model. Presented results could represent 
progressive breakthrough in the quality testing of 
lamb meat, with potential to provide the missing 
tool for future freshness quality testing methods of 
lamb or other meats or other food products. The 
main conclusions can be summarized as follows: 
1.	 The model’s accuracy in predicting lamb fresh-

ness correlated positively with the number of 
independent variables incorporated, with the 
impedance value standing out as the primary 
parameter influencing prediction accuracy. 

2.	 As a  result of lamb ageing, notable changes 
occured within its cell structure, such as altera-
tions in cell water content and protein compo-
sition, detectable via selected impedance cha
racteristics. 

3.	 Changes observed in the impedance of aged 
lamb meat reflected a  combined impact 
stemming from alterations in water state and 
micro-morphology.

4.	 Presented results bear significance for lamb 
freshness categorization and offer potential 
applicability in testing the freshness of various 
other meats.
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