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CO2 produced from fermentation processes, 
including wine fermentation, is a  saturated gas, 
at low to atmospheric pressure [1]. During the 
fermentation of wine, many volatile aroma-active 
are formed by yeast metabolism [2–4] and so the 
fermentation gas is enriched with valuable volatile 
substances and with off-odours [5–7]. The latter 
are mainly sulphur compounds including H2S and 
dimethyl sulphide (DMS) [8]. Other sensorially 
undesirable volatiles in wine are 4-vinylphenol and 
4-vinylguaiacol, which are formed during fermen-
tation from hydroxycinnamic acids [9]. Off-odours 
could subsequently worsen the sensorial proper-
ties of the product in which the captured CO2 was 
used [10, 11]. 

The biochemical pathway for the formation of 
hydrogen sulfide is an integral part of the metabo-
lism of wine yeasts [12]. Various methods of H2S 
removal were investigated, such as adsorption, 
scrubbing and biological treatment at low tem-
peratures [13–15]. Among these methods, the dry 
adsorption process is a readily available, environ-
mentally friendly and economical method [16].

In this study, the hydrogen sulfide sorption ca-
pacity of two commercial sorbents was assessed, 
together with their ability to pass sensorially posi-

tive aromatic substances such as higher alcohols 
and esters. The results of the study can be used for 
further research and development of new types of 
sorbents.

Materials and methods

Chemicals
Captured compressed carbon dioxide, 

Na2S·9H2O (Thermo Fisher Scientific, Waltham, 
Massachusetts, USA), isoamyl alcohol, isobutyl 
alcohol, isoamyl acetate, hexyl acetate, ethyl bu-
tyrate, ethyl hexanoate and ethyl octanoate (all 
Sigma Aldrich, St. Louis, Missouri, USA) were 
used. Commercial sorbents HyProGen GS-6 
(CuO/MnOx) and HyProGen GS-23 (CuO-ze-
olite) from Catalysts and Chemical Specialties 
(Zorneding, Germany) were used.

Preparation of synthetic fermentation gas 
with sulfane

Three parts of a cellulose wadding (Batist Me
dical Productions, Červený Kostelec, Czech Re-
public) were put into the filter for compressed air 
model 005A (Parker Domnic Hunter, Gateshead, 
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with an inner diameter of 20 mm with a glass frit 
and a Teflon valve. Working gas was supplied from 
the storage keg through a control valve with a flow 
meter. The flow rate of the inlet gas was set to 
1 l·min-1 and continuously controlled during the 
experiment.

Results and discussion

Based on a  previous study by Weinlaender 
et al. [17], where the sorption capacity of various 
sorbents was investigated at low temperature, two 
sorbents based on the combination of CuO-zeolite 
and CuO/MnO were selected for this experiment. 
Fig. 1 and Fig. 2 show the sorption capacities of 
the sorbents. 

Fig. 1 shows the total amount of captured 
hydrogen sulfide. The sorption capacity of the 
sorbent based on CuO-zeolite was low, only 10 mg 

United Kingdom), into which 9 ml of 1 mol·l-1 so-
dium sulfide solution was soaked. Another piece 
of cellulose wadding (Batist Medical Productions) 
was placed on this layer, into which a  solution of 
a  mixture of volatile substances in ethanol was 
soaked (isoamyl alcohol, isobutyl alcohol, isoamyl 
acetate, hexyl acetate, ethyl butyrate, ethyl hexa
noate and ethyl octanoate; 50 µl of each with 1 ml 
of ethanol). Then, the housing was closed and con-
nected to a pressure cylinder as a source of carbon 
dioxide and to a  keg into which the working gas 
was collected. The maximum pressure was set to 
700 kPa by the reducing valve.

Determination of sulfane
Sulfane concentration was determined 

using Gastec sorption tubes in conjunction with 
a  GV-110 gas measuring syringe (Gastec, Kana-
gawa, Japan). Hydrogen sulphide 4HM tubes 
(Gastec) with a  range of 50–800 mg·l-1 were 
used to determine the sulfane concentration 
in the working gas. Tubes 4LT (0.1–2 mg·l-1), 
4LB (1–6 mg·l-1), 4LK (2–20 mg·l-1) and 4L 
(10–120 mg·l-1) were used to measure sulfane con-
centrations in the outlet gas according to increas-
ing concentration.

Determination of volatile organic compounds
The concentration of volatile organic com-

pounds in the inlet and outlet gas was measured by 
gas chromatography-mass spectrometry (GC-MS) 
on a  Shimadzu GC-17A gas chromatograph 
(Shimadzu, Kyoto, Japan) coupled to a QP5050A 
mass detector (Shimadzu) and an Agilent J&W 
DB-Wax column (25 m × 0.2 mm, 0.2 µm; Agilent, 
Santa Clara, California, USA). The carrier gas was 
He with a  flow rate of 0.9 ml·s-1 (36 cm·s-1). Gas 
injection was from a gas-tight syringe of 2.5 ml in 
splitless mode into the injector at a temperature of 
200 °C and an injection time of 0.2 min. The initial 
separation temperature of 35  °C was maintained 
for 4  min, followed by a  temperature gradient of 
15 °C·min-1 up to a value of 200 °C. The total du-
ration of the analysis was 15 min. The detector 
worked in SIM mode, when fragments 43 (spe-
cific for isoamyl alcohol, isobutyl alcohol, isoamyl 
acetate, hexyl acetate and ethyl butyrate) and 88 
(specific for ethyl hexanoate and ethyl octanoate) 
were monitored.

Design of experiment
The individual sorbents were crushed in a por-

celain grinding bowl and sifted through sieves with 
a mesh size of 0.6 mm and 0.3 mm. An amount of 
2 g of the sorbent was weighed into a Pyrex glass 
column (Corning, New York, New York, USA) 
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Fig. 1. Amount of captured H2S by the sorbents.

The results are expressed as milligrams of captured hydro-
gen sulfide per 2 g of sorbent.
SD – standard deviation.
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Fig. 2. Concentration of H2S in outlet gas.
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of hydrogen sulfide per 2 g of sorbent, compared 
to the sorbent based on CuO/MnOx, which cap-
tured 420 mg of hydrogen sulfide. Fig. 2 shows 
the concentration of hydrogen sulfide in the out-
let gas as a function of the volume of CO2 flowed 
through. While the sorbent based on CuO-zeolite 
released a significant amount of hydrogen sulfide 

already at the beginning, the sorbent based on 
CuO/MnOx had the ability to adsorb hydrogen 
sulfide for a longer time and was not saturated too 
soon. 

Concentrations of individual volatile com-
pounds in outlet gas over time are shown in Tab. 1, 
Fig. 3 and Fig. 4. The concentration of the original 
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Fig. 3. Concentration of individual volatile compounds in outlet gas over time for CuO-zeolite sorbent.
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Fig. 4. Concentration of individual volatile compounds in outlet gas over time for CuO/MnOx sorbent.

Tab. 1. Concentration of the volatile compounds in the outlet gas.

Sorbents
Time
[min]

Isobutylalcohol
[µg·l-1]

Isoamyl acetate
[µg·l-1]

Isoamylalcohol
[µg·l-1]

Ethyl hexanoate
[µg·l-1]

1- Hexyl acetate
[µg·l-1]

Ethyl octanoate
[µg·l-1]

CuO-
zeolite

0* 80.51 ± 0.20 f 87.77 ± 0.45 d 89.39 ± 0.07 e 75.17 ± 0.99 f 76.97 ± 0.79 f 17.22 ± 0.12 b

15 47.99 ± 0.08 d 75.16 ± 1.00 c 26.9 ± 0.15 c 37.26 ± 0.14 d 34.17 ± 0.62 d 4.49 ± 0.13 a

50 3.31 ± 0.00 a 5.02 ± 0.08 b 0.96 ± 0.02 a 4.03 ± 0.06 a 4.55 ± 0.10 ac 1.06 ± 0.05 a

80 5.63 ± 0.11 a 3.28 ± 0.09 b 0.39 ± 0.02 a 2.25 ± 0.13 a 2.48 ± 0.12 c 0.85 ± 0.09 a

CuO/
MnOx

0* 67.22 ± 4.25 e 79.27 ± 3.92 c 65.88 ± 6.56 d 50.33 ± 5.79 e 51.48 ± 6.95 e 13.96 ± 4.55 b

15 36.89 ± 0.62 c 48.92 ± 1.57 a 21.33 ± 1.00 c 18.81 ± 0.42 c 17.41 ± 0.45 b 2.13 ± 0.30 a

50 30.3 ± 1.75 b 44.65 ± 3.78 a 11.41 ± 0.70 b 12.98 ± 0.71 bc 11.24 ± 0.45 ab 1.22 ± 0.15 a

80 29.89 ± 2.11 b 45.76 ± 3.55 a 10 ± 0.84 b 12.29 ± 0.87 b 10.45 ± 0.47 ab 1.03 ± 0.10 a

The average values (n = 3) were combined by contribution to homogenous groups according to Fisher’s test significant 
difference (LSD) test, where different letters in the same row indicate significant differences (α = 0.05).
* – concentration of compounds in inlet gas.
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gas composition can be seen as the first point of 
the curve (inlet gas). The concentration of indivi
dual aromatic substances gradually decreased over 
time after passing through the sorbents. Higher 
concentrations of isoamyl acetate and isobutyl 
alcohol were determined in the outlet gas when 
CuO/MnOx-based sorbent was used.

Since 1807, CO2 is used for production of car-
bonated beverages, such as carbonated soft drinks, 
and this application was extended to production 
of sparkling wines and beer. The CO2 level in 
carbonated beverages ranges from 1  % (v/v) in 
fruit drinks up to 6  % (v/v) in soda drinks [18]. 
The quality and purity of beverage-grade CO2 is 
strictly regulated by The International Society of 
Beverage Technologists (ISBT) [19]. CO2 cap-
tured from the wine fermentation could be a good 
source for the production of beverages, but a pu-
rification step is essential to remove off-odours, 
such as H2S. An additional measure to prevent the 
formation of volatile sulphur compounds and hy-
drogen sulphide in wine, it is effective to apply the 
method of controlled oxidation of must [20].

Conclusions

The results of this study indicate the possibil-
ity to obtain CO2 from wine fermentation, which 
would be of good quality for further use in the 
food industry for the production of carbonated 
beverages. The sorption capacity of two commer-
cially available sorbents for hydrogen sulfide re-
moval was compared, with better results obtained 
with the CuO/MnOx-based sorbent. This sorbent 
had good sorption capacity while passing positive 
aroma-active volatile compounds, such as higher 
alcohols and esters. The results of this study are 
a suitable basis for further research and for prepa-
ration of new types of sorbents.
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