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Listeria monocytogenes, belonging to the most 
important pathogenic microorganisms, is trans­
mitted due to the consumption of contaminated 
food. L. monocytogenes can grow and remain in 
raw milk in a  broad range of temperatures and 
pH as in a  favourable environment for growth of 
pathogenic bacteria. From a  public health view, 
milk can be considered as a potentially risky food 
product especially if it is not properly processed, 
packaged, distributed and stored [1, 2].

Predictive food microbiology is a  theoreti­
cal branch of food microbiology. It assesses and 
models microbial quantity as a  function of en­
vironmental changes using mathematics and 
statistics [3]. Mathematical models applied in 
predictive microbiology are generally classified 
into three categories as primary, secondary and 
tertiary models [4]. Behaviour of microorganisms 
under static environmental conditions is described 

by primary models as a  function of time, while 
secondary models are used to determine the 
effects of environmental factors and/or food ma­
trices on model parameters. Then, primary and 
secondary models may be combined in a computer 
software to tertiary models. Although this conven­
tional modelling approach is generally satisfactory, 
it may have some disadvantages. The main draw­
back is the potential accumulation and propaga­
tion of errors due to the twice-ordered non-linear 
regression process [5, 6].

In recent years, interest in the use of ma­
chine learning algorithms has increased in many 
research areas. This has been triggered by the 
collective possibilities of three advancing technolo­
gies: first, devices to rapidly capture large amounts 
of digital data; second, an exponential increase 
in affordable computing power and data storage; 
and third, a global system of interconnected com­
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Material and methods

The study was performed in five parts: i) po­
pulation data points of L. monocytogenes in 
milk were gathered from the ComBase data­
base (Tasmania Institute of Agriculture, Tasma­
nia, Australia) as Excel (Microsoft, Redmond, 
Washington, USA) files, ii) data pre-processing 
including feature selection was performed, iii) 
various traditional primary models (re-para­
metrized Gompertz, Baranyi and Huang models) 
and a  machine learning-based regression method 
based on gaussian process regression (GPR) were 
applied to predict the microorganism popula­
tion, iv) prediction capability of the methods was 
assessed considering their corresponding coeffi­
cient of determination, root mean square error, 
Akaike information criterion, Bayesian informa­
tion criterion and acceptable prediction zone crite­
ria and v) the prediction capability of both metho­
dologies was tested by considering the externally 
collected data from the literature, which were not 
included in ComBase database, using the software 
developed in this work. All these processes were 
done in Matlab 9.10.0.1710957 (R2021a) software 
(MathWorks, Natick, Massachusetts, USA). The 
flow chart showing the steps followed in the study 
is presented in Fig. 1. Details of the parts of the 
current work are explained in the following sub­
sections.

puter networks for rapid data transfer. There are 
several published works using machine learning 
applications in food safety and modelling [7–9]. As 
various approaches allow identification of under­
lying relationships between explanatory variables 
and response variables from a  dataset, machine 
learning-based regression methods can predict 
the behaviour of populations and have the poten­
tial to improve the predictive accuracy of bacterial 
population behaviour. However, the use of ma­
chine learning algorithms to predict the behaviour 
of microorganisms in food is not yet widespread. 
Only one paper on this topic was published by 
Hiura et al. [10] who used the eXtreme gradient 
boosting tree as a  machine learning algorithm to 
directly predict the bacterial population behaviour 
of L. monocytogenes. In fact, numerous machine 
learning-based regression methods are available 
such as support vector machine regression and 
random forest regression. These are applied in 
food safety [11] and agriculture [12].

In the current study, external data were em­
ployed to predict the behaviour of bacterial 
populations of L. monocytogenes in milk using 
a  machine learning-based regression method. Its 
prediction capability was compared with models 
traditionally used in predictive food microbiology 
to predict the counts of microorganisms, namely, 
the re-parametrized Gompertz, Baranyi and 
Huang models.
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Fig. 1. Flow chart outlining the main steps followed in the present study.
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Data collection
The ComBase database provides approxi­

mately 60 000 bacterial data obtained from 
research organisations and research papers. In 
this database, bacterial data are available with 
their specific features and conditions includ­
ing food category, food name, temperature, pH, 
water activity, conditions and time, which enables 
to classify microbial factors and responses. In or­
der to describe the growth behaviour of L. mono-
cytogenes in milk, 317 bacterial data points were 
collected from the ComBase database with their 
specific and individual information (time, tem­
perature and pH) as Excel files.

Data pre‑processing
The microbial responses collected from the 

ComBase database were stored with their record 
ID. For each record ID belonging to a certain data 
set, the objective variable (response variable) was 
described as the microbial population in milk. 
Other variables including time (in hour), tempera­
ture (in degrees Celsius) and pH were defined as 
predictor variables. The microbial population (ex­
pressed as natural logarithm of counts in colony 
forming units per millilitre) at 0  h were defined 
as the initial microbial population for each record 
ID. Data with a  time of 0 h were coded as 0 and 
other data were coded as 1 to separate initial 
counts from others. Pre-processing was done in 
Matlab 9.10.0.1710957 (R2021a) software.

Modelling

Primary models
Three different primary models, namely, the 

re-parametrized Gompertz [13], Baranyi [14] and 
Huang [15] models were employed using one-
step modelling approach [16, 17] for fitting of the 
growth data points obtained from ComBase data­
base using Eqs. 1–5 given in Tab. 1.

Secondary models
Ratkowsky model [18] was employed to deter­

mine the effects of storage temperature and pH on 
maximum specific growth rate of microorganisms 
(µmax) using Eq. 6 which is only valid in the sub-
optimal temperature and pH range:

𝜇𝜇max = 𝑏𝑏1(𝑇𝑇 − 𝑇𝑇0)2 × (𝑝𝑝𝑝𝑝 − 𝑝𝑝𝑝𝑝min) 	 (6)

where T is storage temperature (in degrees 
Celsius), T0 is theoretical lowest bacterial growth 
temperature (in degrees Celsius), pH is acidity of 
the food product, pHmin is theoretical lowest bac­
terial growth pH, µmax is maximum specific bacte­
rial growth rate (expressed as unit per hour), b1 is 
regression coefficient.

Additionally, lag phase duration (λ) was de­
fined as a  function of µmax with respect to tem­
perature using Eq. 7 [19]:

𝜆𝜆 = 𝑏𝑏2
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇, 𝑝𝑝𝑝𝑝)

 	 (7)

where b2 is regression coefficient, µmax(T,pH) is 
a  function of temperature and pH, which leads λ 
to be defined as a function of storage temperature 
and pH.

Gaussian process regression
Gaussian process regression (GPR) is a  non-

linear, non-parametric Bayesian approach and 

Tab. 1. Primary model used in this work for isothermal conditions.

Model Equation Number

Gompertz 𝑦𝑦(𝑡𝑡) = 𝑦𝑦0 + (𝑦𝑦max − 𝑦𝑦0) ∙ exp {− exp [
𝜇𝜇max ∙ 𝑒𝑒

(𝑦𝑦max − 𝑦𝑦0)
∙ (𝜆𝜆 − 𝑡𝑡) + 1]} (1)

Baranyi

𝑦𝑦(𝑡𝑡) = 𝑦𝑦0 + 𝜇𝜇max𝐹𝐹(𝑡𝑡) − ln(1 + 𝑒𝑒𝜇𝜇max𝐹𝐹(𝑡𝑡) − 1
𝑒𝑒(𝑦𝑦max − 𝑦𝑦0) ) (2)

𝐹𝐹(𝑡𝑡) = 𝑡𝑡 + 1𝑣𝑣 ln(𝑒𝑒
−𝑣𝑣𝑣𝑣 + 𝑒𝑒−𝜇𝜇max𝜆𝜆 − 𝑒𝑒(−𝑣𝑣𝑣𝑣−𝜇𝜇max𝜆𝜆)) (3)

Huang

𝑦𝑦(𝑡𝑡) = 𝑦𝑦0 + 𝑦𝑦max − ln(𝑒𝑒𝑦𝑦0 + [𝑒𝑒𝑦𝑦max − 𝑒𝑒𝑦𝑦0]. 𝑒𝑒−𝜇𝜇max𝐵𝐵(𝑡𝑡)) (4)

𝐵𝐵(𝑡𝑡) = 𝑡𝑡 + 14 ln(
1 + 𝑒𝑒−4(𝑡𝑡−𝜆𝜆)
1 + 𝑒𝑒4𝜆𝜆 ) (5)

Gompertz – re-parametrized Gompertz model, t – time (in hours), y(t) – counts of microorganisms at time t (expressed as natural 
logarithm of counts in colony forming units per millilitre), y0 – initial counts of microorganisms (expressed as natural logarithm 
of counts in colony forming units per millilitre), ymax – maximum counts of microorganisms (expressed as natural logarithm of 
counts in colony forming units per millilitre), µmax – maximum specific growth rate of the microbial culture (expressed as natural 
logarithm of counts in colony forming units per hour), λ – lag phase duration (in hours), v – the rate of increase of the limiting 
substrate, assumed to be equal to µmax.
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flexible, fully probabilistic model [20]. Gaussian 
distribution is based on the concept of infinite-
dimensional generation of normal distributions 
with multivariate algorithm. Gaussian processes 
are used for statistical modelling, regression to 
multiple target values and higher dimensions 
of mapping. In the most basic setting, Gaussian 
process models a  hidden function based on 
a limited set of observations. Squared exponential 
kernel was used for GPR. Gaussian process gives 
the best linear unbiased prediction at unsampled 
locations.

GPR is trained with 10-fold cross validation, 
which is the best way to deal with the overfitting 
problem. In 10-fold cross validation, the dataset 
is divided into 10 equally sized partitions. In each 
iteration, one-fold was used for testing and others 
were used for training. Then, all tests in each 
iteration were combined to acquire predictions for 
the dataset. Cross-validation provides unbiased 
evaluation. Training without validation leads to 
overfitting and provides unsatisfactory validation 
results.

Goodness-of-fit
Comparison of the performance of the models 

was carried out by using the root mean square 
error (RMSE), coefficient of determination (R2), 
corrected Akaike information criterion (AICc) 
and Bayesian information criterion (BIC) using 
Eqs. 8–11, respectively:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑
(𝑥𝑥obs − 𝑥𝑥fit)2

𝑛𝑛 − 𝑠𝑠

n

i=1
 	 (8)

𝑅𝑅2 = 1 − (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) 	 (9)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑛𝑛) ln (𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 ) + 2(𝑠𝑠 + 1) + 2
(𝑠𝑠 + 1)(𝑠𝑠 + 2)
𝑛𝑛 − 𝑠𝑠 − 2  

    
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑛𝑛) ln (𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 ) + 2(𝑠𝑠 + 1) + 2

(𝑠𝑠 + 1)(𝑠𝑠 + 2)
𝑛𝑛 − 𝑠𝑠 − 2  	 (10)

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛 ln (𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 )+ 𝑠𝑠 ln(𝑛𝑛) 	 (11)

where xobs is the experimental quantity of bacteria, 
xfit is the fitted value, n is the number of experi­
ments, s is the number of parameters of the model, 
SSE is the sum of squares of errors and SST is the 
total sum of squares.

The acceptable prediction zone (APZ) pro­
cedure may be used for validation of the over­
all performance of all kinds of predictive models 
[21]. A  prediction is taken into consideration as 
desirable by the APZ technique when the resi­

dual (observed – predicted) is in the range of from 
–1  log CFU·ml-1 to 0.5  log CFU·ml-1 (fail-safe) 
and fail dangerous if the residuals are outside this 
range. pAPZ is the proportion of residuals within 
APZ range.

Validation and software development
The prediction capability of traditional 

modelling approaches and of the machine learning 
approach was evaluated with the bacterial growth 
data of L. monocytogenes in milk extracted from 
the published study [1]. The comparison was done 
considering bias (Bf) and accuracy (Af) factors 
given in Eq. 12 and Eq. 13, respectively:

𝐵𝐵𝑓𝑓 = 10
∑ log(𝑥𝑥pred 𝑥𝑥obs⁄ )𝑛𝑛
𝑖𝑖=1

𝑛𝑛  	 (12)

𝐴𝐴𝑓𝑓 = 10
∑ log(𝑥𝑥pred 𝑥𝑥obs⁄ )𝑛𝑛
𝑖𝑖=1

𝑛𝑛  	 (13)

where xpred refers to the predicted counts of the 
microorganism (expressed as logarithm of colony 
forming units per millilitre), xobs refers to experi­
mental counts of microorganisms (expressed as 
logarithm of colony forming units per millilitre) 
and n refers to the number of experimental data 
points. 

In order to show validation results visually, 
a prediction software was developed in this study 
employing traditionally used models (re-para­
metrized Gompertz, Baranyi and Huang) and the 
proposed alternative machine learning-based re­
gression method (GPR). All these processes were 
done in Matlab 9.10.0.1710957 (R2021a) software.

Results and discussion

Record ID, temperature (in degrees Celsius), 
pH and time (in hours) for L. monocytogenes in 
milk were obtained from the ComBase database, 
the histograms of gathered data are given in Fig. 2. 
Totally, 317 data points were employed. Maximum 
specific growth rate (μmax), which is one of the 
most important growth kinetic parameters, can be 
modelled with respect to environmental factors 
such as temperature and pH. Temperature plays 
a key role in affecting microbial growth behaviour 
in food [22]. Temperature ranged from 5  °C to 
35  °C, which are the possible temperatures to 
which food products are subjected. Other impor­
tant factor that is directly affecting the growth be­
haviour of microorganisms is pH. In this study, pH 
ranged from 4.32 to 7.00 (Fig. 2).

Goodness-of-fit of the traditional models (re-
parametrized Gompertz, Baranyi and Huang 
models) and of the machine learning-based re­
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gression method (Gaussian process regression) 
for estimation of the bacterial data points of 
L.  monocytogenes in milk was assessed by ana­
lysing their statistical indices (R2, RMSE, AICc, 
BIC and pAPZ) (Tab. 2). The R2 values obtained 
from the conventional models were in the range 
of 0.832–0.861 and the RMSE values ranged 
from 0.739 to 0.813. On the other hand, Gaussian 
process regression provided R2 and RMSE of 0.958 
and 0.407, respectively. This result showed that the 
machine learning-based regression method pro­
vided better fitting performance than any of the 
traditional models (re-parametrized Gompertz, 
Baranyi and Huang models). Hiura et al. [10] also 
used a machine-learning algorithm to predict the 
behaviour of L. monocytogenes in various food 
products such as beef, culture medium or pork and 
reported that R2 and RMSE values were a  maxi­
mum of 0.80 and a minimum of 0.96, respectively. 
The results indicated that the machine-learning 
approach used in this study provided satisfactory 
fitting performance. 

Values –119.1 < AICc < –179.6 and –163.1 < 
BIC < –102.6 were obtained for the conventional 

models, while AICc of –557.0 and BIC of –540.4 
were for obtained for the machine learning-based 
regression method. These results indicated that 
Gaussian process regression used in this study 
yielded excellent prediction capability although 
the traditional secondary modelling step, in which 
the effects of environmental factors and/or food 
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Fig. 2. Histograms of the variables.

A – temperature, B – pH, C – time, D – initial microbial count.

Tab. 2. Comparison of the performance 
of the models for training data.

Models R2 RMSE AICc BIC pAPZ

Gompertz 0.861 0.739 –179.6 –163.1 0.970

Baranyi 0.855 0.754 –166.5 –149.9 0.965

Huang 0.832 0.813 –119.1 –102.6 0.963

GPR 0.958 0.407 –557.0 –540.4 0.989

Gompertz – re-parametrized Gompertz model, GPR – 
Gaussian process regression, R2 – coefficient of determi-
nation, RMSE – root mean square error, AICc – corrected 
Akaike information criterion, BIC – Bayesian information 
criterion, pAPZ – proportion of the number of higher resi
duals (observed–predicted) ranging from –1 log CFU·ml-1 to 
+0.5 log CFU·ml-1 within the number of all predictions.
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matrixes on model parameters are determined, 
was skipped. 

No standard is available in predictive micro­
biology for classification of model performance. 
However, in the US education system, an estab­
lished performance criterion is that a test score of 
70  % correct answers is the minimum for classi­
fication of acceptable performance [23]. This es­
tablished criterion is used in the APZ method. 
Thus, when the proportion of residuals in APZ 
(pAPZ) is 0.7, the model is classified as provid­
ing acceptable predictions. pAPZ for the re-
parametrized Gompertz, Baranyi and Huang 
models was 0.970, 0.965 and 0.963, respectively, 
while pAPZ for the Gaussian process regression 
0.989. This would mean that the traditional 
models (re-parametrized Gompertz, Baranyi and 
Huang models) and the machine learning-based 
regression method yielded acceptable prediction 
performance and Gaussian process regression had 
the best performance (Fig. 3).

External validation based on independent ex­
periments is necessary to reliably use the models 

developed. Although Gaussian process regression 
gave the best fitting performance for the bacterial 
data points of L. monocytogenes in milk, the pre­
diction capability of re-parametrized Gompertz, 
Baranyi, Huang and Gaussian process regression 
were analysed also with external data sets that 
were not used for training of the models. The com­
parison for predicted microbial counts was done 
by considering the statistical indices (R2, RMSE, 
Bf, Af and pAPZ; Tab. 3). The R2 values obtained 
from each of the conventional models were in the 
range of 0.823–0.930 and the RMSE values ranged 
from 0.442 to 0.701. On the other hand, Gaussian 
process regression provided R2 and RMSE of 0.938 
and 0.415, respectively. This result showed that the 
machine learning-based regression method pro­
vided better prediction capability than any of the 
traditional models (re-parametrized Gompertz, 
Baranyi and Huang models). 

Values 1.019 < Bf < 1.071 and 1.059 < Af < 
1.103 were obtained for the conventional models, 
while Bf of 1.016 and Af of 1.056 were obtained for 
the machine learning-based regression method. Bf 
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Fig. 3. Observed and model-fitted counts of Listeria monocytogenes in milk in the training phase.

A – re-parametrized Gompertz model, B – Baranyi model, C – Huang model, D – Gaussian process regression model.
xpred – predicted counts of the microorganism, xobs – observed counts of microorganisms.
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factor of 1 indicates no structural deviation of the 
model. Bf  factor of 1.016 indicated that the model 
overestimated the maximum by 1.6 % whereas Af 

of 1.056 showed that, on average, the predicted 
value was by a maximum of 5.6 % different (either 
smaller or larger) from the observed value. These 
results suggest that Gaussian process regression 
can be safely used because the error rates are 
relatively small. Additionally, pAPZ was 0.989 for 
Gaussian process regression, which means that 
98.9 % of all data were in the range of the accept­
able prediction zone (Fig. 4). 

The comparison for the predicted microbial 
counts done by considering the statistical indices 
(R2, RMSE, Bf, Af and pAPZ) confirmed that 
Gaussian process regression could be reliably used 
as an alternative way of describing the growth be­
haviour of L. monocytogenes in milk. Therefore, 
the software developed in this work has a  signifi­
cant potential to be used as an alternative simula­
tion method by which the predictions can be done 
similarly to the primary and secondary model steps 
in the traditionally used approach in the field of 

predictive microbiology. The developed software is 
provided in GitHub platform with “Listeria-mono
cytogenes-behaviour-in-milk” repository  (GitHub, 
San Francisco, California, USA).

Maximum specific growth rate (µmax) and 
lag phase duration (λ) are the critical parameters 

Tab. 3. Comparison of the performance 
of the models for external validation data.

Models R2 RMSE Bf Af pAPZ

Gompertz 0.881 0.574 1.047 1.084 0.970

Baranyi 0.930 0.442 1.019 1.059 0.965

Huang 0.823 0.701 1.071 1.103 0.963

GPR 0.938 0.415 1.016 1.056 0.989

Gompertz – reparametrized Gompertz model, GPR – 
gaussian process regression, R2 – adjusted coefficient of 
determination, RMSE – root mean square error, Bf – bias 
factor, Af – accuracy factor calculated based on micro-
bial counts (expressed as logarithm of counts in colony 
forming units per millilitre), pAPZ – proportion of the number 
of higher residuals (observed–predicted) ranging from 
–1 log CFU·ml-1 to +0.5 log CFU·ml-1 within the number of 
all predictions.
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Fig. 4. Observed and predicted counts of Listeria monocytogenes in milk in the validation phase.

A – re-parametrized Gompertz model, B – Baranyi model, C – Huang model and D – Gaussian process regression model.
xpred – predicted counts of the microorganism, xobs – observed counts of microorganisms.
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to describe the growth behaviour of microor­
ganisms in food. The parameters to describe 
µmax  and λ derived from the re-parametrized 
Gompertz, Baranyi and Huang models are given 
in the Tab.  4. Unfortunately, both of these para­
meters (µmax and λ) could not be determined using 
the machine learning approach. Therefore, this 
may be considered as the first important limita­
tion of this methodology compared to traditional 
modelling methods in predictive microbiology. 
A  second limitation can be the fact that the pre­
diction power of the machine learning regression 
method directly depends on the dataset size. If 
the number of data is not enough, the machine 
learning method may not be used for prediction 
of microorganism behaviour, meaning it requires 
a big dataset to be employed for modelling. Addi­
tionally, this modelling work can only be used 
for prediction of L. monocytogenes in milk at cer­
tain conditions. However, this is also valid for all 
the modelling works in predictive microbiology 
carried out by traditional modelling. On the other 
hand, the machine learning approach enables si­
multaneous modelling of microbial survival and 
growth behaviour, meaning that the machine 
learning methodology can be practically applied to 
microbial growth data and inactivation data at the 
same time.

Conclusion

In this work, the prediction capabilities of tra­
ditionally used models (re-parametrized Gom­
pertz, Baranyi and Huang models) and the al­
ternatively proposed machine learning-based 
regression method (Gaussian process regression) 
were evaluated and compared for description of 
L. monocytogenes behaviour in milk. All mod­
els provided satisfactory prediction capability but 
Gaussian process regression was superior over the 
traditionally used models for fitting and predic­
tion. The results indicated that Gaussian process 
regression can be reliably employed as an alter­

native way to describe simultaneously growth and 
survival of microorganisms in food products and 
has a  significant potential to be used as an alter­
native simulation method by skipping the second­
ary model step in the two-step modelling approach 
traditionally used in predictive microbiology.
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