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Milk is a  nutrient-rich and health-promot-
ing beverage, but it is easily perishable within 
a  short time. Furthermore, milk may be poten-
tially risky due to being a  favourable environ-
ment for growth of pathogenic bacteria if it is not 
properly processed, packaged, distributed and 
stored [1]. Among food-borne pathogenic bac-
teria, Listeria  monocytogenes is one of the most 
abundant one that can be isolated from milk and 
milk products [2]. Actually, L. monocytogenes is 
expected to be efficiently inhibited by pasteuri-
zation process in case that cross contamination 
occurs in any time before consumption, and milk 
may become a potentially unsafe beverage [2]. In 
such case, although temperature control is cru-
cial, the conditions to which milk subjected during 
its transportation and marketing are beyond the 
manufacturer’s direct control, and it frequently 
deviate from the specifications set. Additionally, 
there is no temperature control from the time the 
products leave the retail store to the time of do-

mestic storage and consumption. Uncontrolled 
temperature conditions can enable even a  few 
cells of L. monocytogenes to reach high numbers 
(> 2 log CFU·ml-1) that may lead to serious health 
risks [3].

Predictive food microbiology is a  relatively 
new field of theoretical research in food micro
biology that combines traditional food microbiol-
ogy knowledge with the disciplines of mathematics 
and statistics to describe the behaviour of bacteria 
in food under variable environmental conditions 
[4]. Through modelling studies in predictive food 
microbiology, undesirable microbial effects that 
cause food-borne diseases can be stopped or re-
duced. Mathematical models used in predictive 
microbiology are basically primary or secondary 
models [5]. Primary models describe behaviour of 
microorganism as a function of time under a static 
environmental condition. Secondary models are 
used to determine the effects of environmental 
factors and/or food matrixes on model parameters. 
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biology field and some inspirational works were 
published recently [11–13].

The main objective of this study was to com-
prehensively evaluate and validate the predic-
tion capability of the inverse dynamic modelling 
approach based on the Baranyi and Huang models 
by considering growth kinetic parameters of 
L.  monocytogenes in milk at isothermal and non-
isothermal storage conditions. 

Materials and methods

Study structure
The work was carried out in five main separate 

phases: i) the growth data points of L. monocy-
togenes in milk for isothermal and non-isothermal 
storage conditions were gathered, ii) the two-step 
and one-step modelling approaches including 
different primary models (the Baranyi and Huang 
models) and secondary model of Ratkowsky were 
applied to obtain growth kinetics for the direct 
modelling approach, iii) the dynamic versions of 
the same models were used to obtain growth ki-
netics for the inverse modelling approach, iv) the 
growth kinetics obtained from direct and inverse 
modelling methods were statistically compared 
and v) externally collected maximum growth rate 
values were used for model validation. The flow 
chart outlining the main steps followed in the 
present study is shown in Fig. 1. Details of the 
study phases are explained in the following subsec-
tions.

Data collection
The bacterial growth data of L. monocytogenes 

in milk at isothermal and non-isothermal storage 
conditions were extracted from the previously 
published study [14]. The experimental set-up to 
monitor L. monocytogenes in milk was explained 
in detail in the work of Xanthiakos et al. [14]. In 
brief, fresh commercial pasteurized whole milk 
(less than 6 h after packaging) was used for ino
culation to obtain 3–4 log CFU·ml-1. Milk cartons 
were then either stored under controlled isother-
mal conditions (4 °C, 8 °C, 12 °C and 16 °C) or 
under programmed changing temperature con-
ditions in high-precision (± 0.2 °C) low-temper-
ature incubators (model MIR 153; Sanyo Elec-
tric, Ora-Gun, Gunma, Japan). The temperature 
of samples during storage was monitored using 
electronic temperature-monitoring devices (Cox 
Tracer; Cox Technologies, Belmont, North Caro-
lina, USA). Duplicate samples from each storage 
temperature were taken at appropriate time inter-
vals to allow for efficient kinetic analysis of micro-

Temperature is one of the most important envi-
ronmental factors that directly affect the growth 
behaviour of microorganisms in foods.

The most widely used modelling approach in 
predictive microbiology is a  two-step modelling 
approach in which a  sequential fitting process 
of primary and secondary models is applied. In 
this process, the primary model is fitted to the 
growth data points. Then, the growth kinetic pa-
rameters derived from the primary model are 
defined as a  function of environmental condi-
tions such as temperature, pH and water activ-
ity in the secondary model [6]. Even though this 
modelling approach is generally satisfactory, there 
are some pitfalls. The major disadvantage lies in 
the potential accumulation and propagation of 
errors due to the ordered non-linear regression 
process performed twice [7]. The one-step model-
ling approach is an  alternative way of describing 
growth behaviour by overcoming the weaknesses 
of a  two-step process. In this approach, primary 
and secondary models are fitted simultaneously 
to all growth data points from different conditions 
[8, 9]. The one-step modelling approach can also 
be applied to fit the growth data points gathered 
under dynamic conditions, which enables to deter-
mine the kinetic parameters from dynamic experi-
ments without performing isothermal experiments 
that are usually time-consuming and labour-inten-
sive [10, 11].

Both two-step and one-step modelling 
approaches used so far in predictive food micro
biology are direct modelling processes. In these 
modelling approaches, primary and secondary 
models are used for stable environmental condi-
tions, and then the models obtained from two-
step or one-step modelling approaches are eva
luated considering their predictive capabilities 
at changing environmental conditions. As an al-
ternative to direct modelling techniques, inverse 
dynamic modelling approach is a  new model-
ling method. Rather than using isothermal ex-
periments, which are often time-consuming and 
labour-intensive, this method directly uses the 
behaviour of microorganisms subjected to dy-
namically varying temperature conditions, which 
minimizes experimental effort in a  single step, 
being a  fast and inexpensive way of modelling 
[10]. Therefore, the inverse dynamic modelling 
approach has a  considerable potential as a  simu-
lation tool to predict growth behaviour of micro-
organisms and can pave a new alternative way for 
doing experimental plan in predictive food micro-
biology [11]. In this regard, the advantages of the 
inverse dynamic modelling approach have increas-
ingly aroused interests in predictive food micro-
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Tab. 1. Primary models used in this work for isothermal conditions.

Model Equation Number

Baranyi

𝑦𝑦(𝑡𝑡) = 𝑦𝑦0 + 𝜇𝜇max𝐹𝐹(𝑡𝑡) − ln(1 + 𝑒𝑒𝜇𝜇max𝐹𝐹(𝑡𝑡) − 1
𝑒𝑒(𝑦𝑦max − 𝑦𝑦0) ) (1)

𝐹𝐹(𝑡𝑡) = 𝑡𝑡 + 1𝑣𝑣 ln(𝑒𝑒
−𝑣𝑣𝑣𝑣 + 𝑒𝑒−𝜇𝜇max𝜆𝜆 − 𝑒𝑒(−𝑣𝑣𝑣𝑣−𝜇𝜇max𝜆𝜆)) (2)

Huang

𝑦𝑦(𝑡𝑡) = 𝑦𝑦0 + 𝑦𝑦max − ln(𝑒𝑒𝑦𝑦0 + [𝑒𝑒𝑦𝑦max − 𝑒𝑒𝑦𝑦0]. 𝑒𝑒−𝜇𝜇max𝐵𝐵(𝑡𝑡)) (3)

𝐵𝐵(𝑡𝑡) = 𝑡𝑡 + 14 ln(
1 + 𝑒𝑒−4(𝑡𝑡−𝜆𝜆)
1 + 𝑒𝑒4𝜆𝜆 ) (4)

t – time (in hours); y(t) – count of microorganisms at time t (expressed as natural logarithm of colony forming units per gram); 
y0 – initial count of microorganisms (expressed as natural logarithm of colony forming units per gram); ymax – maximum count 
of microorganisms (expressed as natural logarithm of colony forming units per gram); µmax – maximum specific growth rate of 
microorganisms (expressed as natural logarithm of colony forming units per hour); λ – lag phase duration (in hours); ν – rate of 
increase in the limiting substrate, assumed to be equal to µmax.

Tab. 2. Primary models used in this work for non-isothermal conditions.

Model Equation Number

Baranyi

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑 = 𝜇𝜇max [

1
1 + exp(−𝑄𝑄(𝑡𝑡))] {1− exp(𝑦𝑦(𝑡𝑡) − 𝑦𝑦max)} (5)

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑 = 𝜇𝜇max (6)

𝑦𝑦(0) = 𝑦𝑦0  and 𝑄𝑄(0) = ln(𝑞𝑞0) (7)

Huang

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑 = µmax [

1
1 + exp[−4(𝑡𝑡 − 𝜆𝜆)]] {1− exp(𝑦𝑦(𝑡𝑡) − 𝑦𝑦max)} (8)

𝑦𝑦(0) = 𝑦𝑦0 (9)

t – time (in hours); y(t) – count of microorganisms at time t (expressed as natural logarithm of colony forming units per gram); 
ymax – maximum count of microorganisms (expressed as natural logarithm of colony forming units per gram); µmax – maximum 
specific growth rate of microorganisms (expressed as natural logarithm of colony forming units per hour); λ – lag phase dura-
tion (in hours); y0 – initial count of microorganisms (expressed as natural logarithm of colony forming units per gram); q0 – initial 
dimensionless variable related to physiological state of the cells; Q(t) – a dimensionless variable related to physiological state 
of the cells at time t.

Comparison of growth kinetics (µ  and ) and validation of µmax maxλ

Inverse dynamic modelling approach for non-isothermal conditions

Direct modelling approaches for isothermal conditions

Primary 
model fitting

Secondary 
model fitting

Primary model fitting

Secondary model fitting

One-step
modelling approach

Primary 
model fitting

Secondary 
model fitting

Two-step
modelling approach

Fig. 1. The flow chart outlining the main steps followed in the present study.

µmax – maximum specific growth rate of microorganisms; λ – lag phase duration.
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bial growth. For enumeration of L. monocytogenes, 
0.1  ml volumes of serial dilutions of milk were 
spread on the surface of PALCAM agar plates 
(Merck, Darmstadt, Germany) and incubated 
at 30 °C for 48 h. In the current study, the data 
collection process for the growth curves was per-
formed using GetData Graph Digitizer 2.26 soft-
ware (Digital River, Cologne, Germany) by which 
the growth data points could be extracted precisely 
with one decimal accuracy.

Primary models
Two different primary models, namely, Baranyi 

[15, 16] and Huang [16] models were employed for 
fitting of the growth data points obtained at iso-
thermal and non-isothermal storage conditions 
using Eqs. 1–9 shown in Tab. 1 and Tab. 2, respec-
tively.

Secondary models
The Ratkowsky model [17] was employed for 

the determination of relationship between storage 
temperature and µmax using the Eq. 10:

√𝜇𝜇max =  𝑏𝑏1(𝑇𝑇 − 𝑇𝑇0) 	 (10)

where T is storage temperature (in degrees Cel-
sius), T0 is theoretical lowest temperature at 
which microbial growth is observable (in degrees 
Celsius), µmax is maximum specific bacterial 
growth rate (expressed as unit per hour), b1 is re-
gression coefficient.

Additionally, lag phase duration (λ) was de-
fined as a  function of µmax with respect to tem
perature using the Eq. 11 [18]:

𝜆𝜆 = 𝑏𝑏2
𝜇𝜇max (𝑇𝑇)   	 (11)

where b2 is regression coefficient, µmax(T) is 
a function of storage temperature (T).

Parameter estimation 
For the direct two-step and one-step model-

ling approaches, the parameters were calculated 
by means of NonLinearModel command, which uses 
Levenberg Marquardt algorithm, in the Matlab 
8.3.0.532 (R2014a) software (MathWorks, Natick, 
Massachusetts, USA). Determination of suitable 
starting values in non-linear regression procedure is 
essential step to estimate the accurate parameters.

For the inverse dynamic modelling approach, 
each of the parameters (b1, b2 and T0) was estimat-
ed with ga command, which uses genetic algorithm 
in Global Optimization Toolbox, in the Matlab 
software to minimize difference between observed 
and fitted growth data using the objective function 
given by Eq. 12:

𝑜𝑜𝑜𝑜𝑜𝑜 = min∑[𝑓𝑓fit(𝑏𝑏1, 𝑏𝑏2,𝑇𝑇0)−𝑓𝑓obs]2
𝑛𝑛

𝑖𝑖=1
 

	 (12)

where obj is the objective function, minimization 
of difference between ffit and fobs, ffit are the fitted 
values that satisfy the objective function, fobs is the 
observed growth data and n is the number of ex-
periments. 

Since the ordinary differential equations in the 
dynamic models of Baranyi and Huang have no 
analytical solution [10], numerical solution was 
obtained by using the function ode23 in Matlab, 
which is based on the Runge–Kutta method.

The 95% confidence intervals (CI) of the model 
parameters were calculated using Eq. 13 [16]:

𝐶𝐶𝐼𝐼 = par ± 𝑡𝑡𝑛𝑛√𝑆𝑆 	 (13)

where par is the parameter estimated by fitting, 
tn is calculated using the inverse of Student’s t cu-
mulative distribution function, S is a vector of the 
diagonal elements from the estimated covariance 
matrix of the coefficient estimates, S = (XTX)−1s2, 
X is the Jacobian of the fitted values with respect 
to the parameters, XT is the transpose of X and s2 
is the mean squared error.

Comparison of the goodness of fit
The comparison of the performance of the 

models was carried out by using the root mean 
square error (RMSE), adjusted coefficient of de-
termination (R2adj), corrected Akaike information 
criterion (AICC) and Bayesian information crite-
rion (BIC) using Eqs. 14–17, respectively:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑
(𝑥𝑥obs − 𝑥𝑥fit)2

𝑛𝑛 − 𝑠𝑠

𝑛𝑛

𝑖𝑖=1
 	 (14)

𝑅𝑅adj
2 = 1− (𝑛𝑛 − 1

𝑛𝑛 − 𝑠𝑠) (
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆) 	 (15)

𝐴𝐴𝐴𝐴𝐴𝐴C = (𝑛𝑛) ln (𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 ) + 2(𝑠𝑠 + 1) + 

+2
(𝑠𝑠 + 1)(𝑠𝑠 + 2)
𝑛𝑛 − 𝑠𝑠 − 2  

	 (16)

𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛 ln (𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 )+ 𝑠𝑠 ln(𝑛𝑛) 	 (17)

where xobs is experimental bacterial growth, xfit is 
the fitted value, n is the number of experiments, 
s  is the number of parameters of the model, SSE 
is the sum of squares of errors and SST is the total 
sum of squares.

Both Baranyi and Huang models use ln scale 
to fit the counts of microorganisms, but reporting 
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microbial outcomes is frequently done in log scale. 
Therefore, conversion from ln scale to log scale 
was done throughout the study to report all good-
ness-of-fit results.

 Statistical analysis
Growth kinetic parameters obtained from 

all modelling approaches and primary models 
were subjected to one-way analysis of variance 
(ANOVA) using the Matlab software. Statistical 
differences between the means of growth kinetic 
parameters were determined by post hoc analysis 
using Tukey’s multiple range test. The differences 
between the means were regarded as statistically 
significant when p ≤ 0.05.

Validation of the models
The prediction capability of individual model-

ling approaches and primary models was evaluated 
through independent maximum specific growth 
rate data of L. monocytogenes in milk collected 
from ComBase database (University of Tasma-
nia, Hobart, Australia). Arbitrary selected eight 
L. monocytogenes growth curves for milk products 
stored at temperatures ranging from 4 °C to 15 °C 
were used to test the prediction performance of 
the models. The comparison was done considering 
bias (Bf) and accuracy (Af) factors [19] are given in 
Eqs. 18 and 19, respectively:

𝐵𝐵f = 10
∑ log(𝑥𝑥pred/𝑥𝑥obs)⁡𝑛𝑛
𝑖𝑖=1

𝑛𝑛 ⁡⁡ 	 (18)

𝐴𝐴f = 10
∑ log(𝑥𝑥pred 𝑥𝑥obs⁄ )𝑛𝑛
𝑖𝑖=1

𝑛𝑛   	 (19)

where xpred refers to predicted µmax (expressed 
as natural logarithm of colony forming units per 
hour), xobs refers to experimental µmax, n refers to 
the number of experimental growth data.

Results and discussion

The experimental L. monocytogenes counts 
collected from previously published curves for milk 
at the storage temperatures of 4 °C, 8 °C, 12  °C 
and 16 °C [14] were used to implement the two-
step and one-step modelling approaches based 
on the Baranyi and Huang models (Fig. 2, Fig. 3). 
The initial bacterial counts of L. monocytogenes 
were on average 3.6 ± 0.1 log CFU·g-1 (mean ± 
95% CI) for all temperatures. Storage duration 
was directly related to storage temperature and 
ranged from 792 h to 144 h (33 days to 6  days) 
with an increase in storage temperature from 4 °C 
to 16 °C. The L. monocytogenes counts could reach 
the level ranging from 7.5 ± 0.1 log CFU·g-1 to 
8.6 ± 0.1 log CFU·g-1 (mean ± 95% CI) at the end 
of storage depending on the storage temperature. 
This demonstrated that the growth potential of 
L.  monocytogenes in milk was enhanced with the 
increasing storage temperature.

The goodness-of-fit of both primary models 
involved in the traditionally used two-step model-
ling approach was evaluated by calculating their 
statistical indices (RMSE, R2adj, AICC and BIC). 
The RMSE values obtained from the two-step 
modelling approach were 0.699 and 0.909 for the 
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Fig. 2. The observed and fitted Listeria monocytogenes counts in milk 
using direct two-step modelling approach.
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Baranyi and Huang models, respectively, and the 
R2adj values were 0.825 and 0.705 for the Baranyi 
and Huang models, respectively (Tab. 3). The 
Baranyi model yielded lower RMSE and higher 
R2adj values. This means that the fitting capability 
of the Baranyi model was better than that of the 
Huang model when direct two-step modelling was 
used to describe the growth behaviour of L. mono-
cytogenes in milk. In addition, the AICC and BIC 
indices of Baranyi model were –32.3 and –25.8, 
respectively, while the AICC and BIC indices of 
Huang model were –2.4 and 4.1, respectively. 
These results indicated that the Baranyi model was 
more successfully to estimate growth behaviour of 
L. monocytogenes in milk in the direct two-step 
modelling approach (Tab. 3).

All the statistical indices (RMSE, R2adj, AICC 
and BIC) obtained from the one-step model-
ling approach indicated that the fitting capability 
of the Baranyi model for the one-step model-
ling approach was better than that of the Huang 
model, analogically as it appeared in the two-step 
modelling approach (Tab. 3). In addition, the sta-
tistical evaluation regarding the fitting capability 
of the primary models based on the one-step 
modelling approach showed that the fitting capa-
bility each of the primary models was better than 
that of the traditionally used two-step modelling 
approach (Tab. 3). These results showed that the 
one-step modelling approach enhanced the fitting 
performance of the models and could be more re-
liably used for estimation of L. monocytogenes in 
milk regardless of the primary models. Addition-
ally, the lack of fitting capability of the direct two-

step modelling approach for 4 °C was eliminated 
by implementation of the direct one-step model-
ling approach (Fig. 3).

The degrees of freedom of the one-step mo
delling approach proposed in this study was 52 
(the number of observations – the number of pa-
rameters in the global model), while the degrees 
of freedom of the traditional two-step model-
ling approach used by Xanthiakos et al. [14] was 
only 3 for the Ratkowsky model and was a maxi-
mum of 12 for the primary models at various tem-
peratures ranging from 4 °C to 16 °C. It is impor-
tant to underline that in particular the Ratkowsky 
model with a  low number of degrees of freedom 
may be regarded as providing results that are sus-
picious and uncertain. From this point of view, the 
one-step modelling approach has a higher number 
of degrees of freedom, which decreases confi-
dence intervals and uncertainty of the parameters 
compared to the traditionally used two-step mod-
elling approach. Therefore, regardless of the pri-
mary model, the one-step modelling approach 
significantly (p < 0.05) improved the prediction 
capability of the models for quantitative descrip-
tion of L. monocytogenes in milk.

When the one-step modelling approach was 
used, the minimum counts of L. monocytogenes in 
milk were predicted to be 3.8 ± 0.2 log CFU·g-1 
and 3.9 ± 0.1 log CFU·g-1 (mean ± 95% CI) for 
the Baranyi and Huang models, respectively. 
The experimental minimum counts were be-
tween 3.6 log CFU·g-1 and 3.7 log CFU·g-1 corre-
sponding to an average of 3.7 ± 0.1 log CFU·g-1 
(mean ± 95% CI), which showed that the Baranyi 

Fig. 3. The observed and fitted Listeria monocytogenes counts in milk 
using direct one-step modelling approach.

A – Baranyi model, B – Huang model.
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model provided better prediction performance for 
maximum counts in comparison with the Huang 
model.

The one-step modelling approach predicted  
the maximum counts of L. monocytogenes to be 
8.3 ± 0.3 log CFU·g-1 and 8.1 ± 0.3 log CFU·g-1 
(mean ± 95% CI) for the Baranyi, and Huang 
models, respectively. The maximum counts were 
experimentally found to be within the range of 
8.4–8.7 log CFU·g-1. This indicated that each pri-
mary model successfully estimated maximum 
counts of L. monocytogenes in milk.

The experimental L. monocytogenes counts 
in milk at dynamic storage temperatures rang-
ing from 4 °C to 16 °C were used for dynamic in-
verse modelling approach based on Baranyi and 
Huang models (Fig. 4). RMSE and R2adj values 

of both primary models involved in inverse dy-
namic modelling approach were calculated. The 
RMSE values were 0.183 and 0.267 for the Baranyi 
and Huang models, respectively, and R2adj values 
were 0.989 and 0.976 for the Baranyi and Huang 
models, respectively. The Baranyi model yielded 
lower RMSE and higher R2adj values. This means 
that the fitting capability of the Baranyi model 
was better than that of the Huang model when in-
verse dynamic modelling was used to describe the 
growth behaviour of L. monocytogenes in milk.

T0 and b1 are the Ratkowsky parameters show-
ing the relationship between temperature and 
maximum growth rate of the microorganism. 
T0 was equal to –2.0 ± 0.1 °C and –4.7 ± 0.3 °C 
(mean ± 95% CI) for the Baranyi and Huang 
models, respectively, in inverse dynamic modelling 
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approach. Meanwhile, b1 was found to range from 
0.020 to 0.024 for both Baranyi and Huang models 
in the inverse dynamic modelling approach. These 
results are in a good agreement with the work con-
ducted by Xanthiakos et al. [14] who reported 
that the values of T0 and b1 ranged from –1.6 °C to 
–3.0 °C and 0.023 to 0.25 (°C-1. h0.5), respectively, 
with 95% CI. Additionally, in this work T0 and b1 
were calculated ranging from –0.7 °C to –4.9  °C 
and from 0.019 to 0.028 (°C-1. h0.5), respectively, 
when the direct modelling approach was em-
ployed. All these results showed that the inverse 
dynamic modelling approach could estimate the 
minimum temperature for growth of L. monocy-
togenes in milk.

Another Ratkowsky parameter, b2 directly 
related to the lag phase duration of the micro-
organism, was calculated as 1.03 ± 0.07 and 
1.54 ± 0.04 (mean ± 95% CI) for the Baranyi and 
Huang models in the inverse dynamic modelling 
approach, respectively. These results are within 
the range of findings reported by Xanthiakos 
et al. [14] who calculated b2 with average values 
ranging from 1.34 to 4.37 for temperatures from 
4 °C to 16 °C, suggesting that the inverse dynamic 
modelling approach can predict b2 parameter of 
L. monocytogenes in milk.

While simulating the growth behaviour of mi-
croorganisms, accurately determining the expo-
nential phase, in which the growth rate reaches 
a  maximum value and variations in organolep-
tic properties of foods also reach maximum, and 
the lag phase, in which organoleptic properties 
almost do not change, are very important. µmax 
and λ are the most important critical parameters 
to describe the growth behaviour of microor
ganisms in food, and temperature is a  key deter-
minant for both growth parameters [20, 21]. The 
kinetic parameters including µmax and λ belong-
ing to L. monocytogenes in milk for each model-
ling approach including the Baranyi and Huang 
models are shown in Fig. 5 and Fig. 6, respectively. 
As expected, the figures demonstrate that µmax in-
creased and λ decreased with an increase in stor-
age temperature. Additionally, µmax and λ values 
of L. monocytogenes in milk obtained from the 
inverse dynamic modelling approach are within 
the range of findings obtained by two-step direct 
modelling approach considering 95% CI. These 
results indicated that the inverse dynamic model-
ling approach can be used for predicting µmax and 
λ parameters of L. monocytogenes in milk and is 
an alternative to traditionally used two-step mo
delling approach for estimating growth parameters 
of microorganisms.

Validation of the models is a  fundamental Ta
b
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process by which the prediction ability of the de-
veloped models can be tested using previously 
published or newly generated data. In this re-
gard, externally and arbitrarily collected µmax 
values of L. monocytogenes in milk products from 
ComBase database were used for assessing the 
prediction power of the modelling approaches and 
primary models considering Bf and Af (Tab.  4). 
The statistical indices of Bf were 1.12 and 0.68 
for the traditionally used direct two-step model-
ling approach based on the Baranyi and Huang 
models, respectively. Bf factor of 1 indicates no 
structural deviation of the model. Bf factor of 1.12 
indicated that the Baranyi model overestimated 
by 12  % whereas the Bf factor of 0.68 indicated 
that the Huang model underestimated by 32  % 
when the direct two-step modelling approach was 
employed. Additionally, the direct two-step mo
delling approach provided statistical indicates of 
Af were 1.20 and 1.46 for the Baranyi and Huang 
models, respectively, meaning that on average 
the predicted value was 20 % and 46 % different 
(either less or greater) from the observed values 
when the Baranyi and Huang models were used, 
respectively. These results simply mean that the 
Huang model failed to accurately predict µmax 
values of L. monocytogenes in milk products when 
the direct two-step modelling approach was em-
ployed. However, the lack of prediction capability 
of the Huang model was eliminated by using the 
direct one-step modelling approach providing the 
statistical indices were Bf  =  1.10 and Af  =  1.21. 
Additionally, the inverse dynamic modelling 
approach based on both primary models yielded 
satisfactory statistical indices (0.99  >  Bf  >  1.10 
and 1.16 > Af > 1.19), confirming that the inverse 
dynamic modelling approach considerably im-
proved models’ prediction capability regardless of 
the primary model used and can be reliably used 
as an alternative way of describing the growth be-
haviour of L. monocytogenes in milk.

Conclusion 

In this work, the Baranyi and Huang models 
were used to evaluate the fitting capabilities of di-
rect two-step, direct one-step and inverse dynamic 
modelling approaches. The direct one-step model-
ling approach improved the fitting capabilities of 
the Baranyi and Huang models when compared 
with the direct two-step modelling approach. The 
inverse dynamic modelling approach based on 
both models not only produced more accurate pre-
dictions, but also decreased the requirement of ex-
perimental effort to describe the growth behaviour 

of L. monocytogenes in milk, clearly meaning that 
the inverse dynamic modelling approach is more 
efficient, accurate and cost-effective way of devel-
oping kinetic models. In other words, the inverse 
dynamic modelling approach has a  considerable 
potential to be used as an alternative simulation 
method to the direct two-step modelling approach, 
which is traditionally used in predictive microbiol-
ogy, because of providing an opportunity to make 
new types of experimental designs that are more 
informative and less time-consuming.
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