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The button mushroom (Agaricus bisporus) 
is the most widely known and consumed mush-
room species in the world because of high levels 
of nutrients [1, 2] and plays an important role in 
mushroom industry [3]. After being harvested, the 
button mushrooms can be easily perishable within 
a short time due to lack of cuticle that could de-
fend them against physical deterioration or micro-
bial contamination. Hence, the button mushrooms 
are very vulnerable to contamination by microor-
ganisms during being grown and processed. In this 
regard, Pseudomonas spp. are known as the most 
ubiquitous microorganisms causing the mushroom 
spoilage [4, 5].

Predictive microbiology is the integration of 
traditional microbiology knowledge with the dis-
ciplines of mathematics and statistics to describe 
microbial behaviour under various environmental 
conditions. This mathematical knowledge enables 
us to estimate the behaviour of pathogens and 
spoilage microorganisms on or in foods subjected 
to the conditions at which microbiological data are 
unavailable [6]. In this regards, the main purpose 
of predictive microbiology is to predict microbial 

behaviour that can prevent food spoilage, as well 
as food-borne illnesses, by employing mathemati-
cal models. Primary and secondary models are 
commonly used in predictive food microbiology 
[7, 8]. For the first class, the modified Gompertz, 
logistic, Baranyi and Huang models are the most 
popular ones describing microbial growth data as 
a function of time at constant environmental con-
ditions. Secondary models provide information 
on how the obtained parameters from primary 
models change with respect to one or more envi-
ronmental or cultural factors (e.g. composition of 
atmosphere, pH, temperature or salt level). Tem-
perature is one of the most important environmen-
tal factors directly affecting the growth behaviour 
of microorganisms in foods, and its effect is widely 
simulated using the Ratkowsky model [9].

The two-step modelling approach, in which 
the primary and secondary models are separately 
fitted to the growth data and kinetic parameters 
respectively, is the most popular modelling proce-
dure followed in the predictive food microbiology. 
However, there are some drawbacks concerning 
the use of the two-step modelling approach. A ma-
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approach to assess and predict mushroom spoilage 
considering the Pseudomonas spp. counts existing 
in the natural microflora of button mushrooms 
(Agaricus bisporus) stored at various temperatures 
ranging from 4 °C to 28 °C. For this purpose, the 
experimental growth data of Pseudomonas spp., 
collected from the previously published curves 
for button mushrooms, were simulated with two-
step and one-step modelling approaches. Four 
different primary models (the modified Gom-
pertz, logistic Baranyi and Huang models) and the 
most-known secondary model (Ratkowsky) were 
employed to predict the Pseudomonas spp. counts 
on button mushrooms as a combined function 
of time and storage temperature. Two-step and 
one-step modelling approaches and the primary 
models used in these modelling approaches were 
compared considering their goodness-of-fit indi-
ces. The modelling approach with the best good-
ness-of-fit index was determined. Validation was 
performed with the externally collected growth 
data previously published Pseudomonas spp. on 
button mushrooms.

Materials and methods

Data collection
Growth data of Pseudomonas spp. were 

collected from the previously published curves for 
button mushrooms under various isothermal tem-
peratures (4, 12, 20 and 28 °C) [19]. The followed 
experimental procedure of obtaining these micro-
biological data was explained in detail previously 
[19]. In brief, button mushrooms were collected 
at the closed cap stage (cap diameter 3.5–4.5 cm) 
and directly transported to the research labora-
tory at 4 °C, without any treatments. The mush-
rooms were put in polystyrene trays, which were 
not overwrapped with any packaging material. The 
microbiological analyses were done for each tem-
perature with an appropriate sampling frequency. 
The Pseudomonas spp. counts during the storage 
were determined in three different trays at each 
storage temperature for each sampling point for 
a maximum duration of 240 h (10 days). Twenty-
one growth data were used for each temperature 
of 4 °C and 12 °C, while twenty-four data points 
were employed for each temperature of 20 °C and 
28 °C. This means that ninety growth data in total  
were used for one-step modelling approach. 

Modelling
For the two-step and one-step modelling 

approaches, the modified Gompertz, logistic 
Baranyi and Huang models were used due to being 

jor drawback is accumulation and propagation of 
errors due to the two sequentially performed non-
linear regression procedures [10]. In other words, 
the sequentially performed primary and secondary 
model fittings generally result in a decrease in 
the overall prediction capability of the model and 
an increase in uncertainty of the estimated para
meter. This occurs in particular when the number 
of data referring to various environmental condi-
tions is not big enough, which causes low degree 
of freedom. Furthermore, this approach often 
fails to estimate the lag time duration although 
it yields relatively reliable information on the 
value of maximum specific growth rate [11, 12]. 
To avoid these disadvantages of two-step model-
ling approach, alternatively, a one-step modelling 
can be applied to simulate microbiological data 
and kinetic parameters. In this approach, primary 
and secondary modelling of the growth and tem-
perature (as a changing environmental factor) 
data is performed simultaneously. The use of this 
approach frequently provides better prediction, 
lower uncertainty, more precise coefficients and 
robust confidence interval than the traditionally 
used two-step modelling approach [13, 14]. These 
advantages are more pronounced at high biologi-
cal variation in microbiological data and when not 
enough microbiological data for the secondary 
model are available [15, 16].

Predictive models developed with one-step 
modelling approach are a relatively new way of 
simulating the growth behaviour of microor
ganisms. The one-step modelling approach has 
been employed up to now for a limited number of 
food products, including liquid eggs, potato salad 
and oyster mushroom [16–18]. In this point, the 
availability and predictive ability of the model, 
which was developed by Manthou et al. [16], 
could be further improved by considering the 
wider temperature range to which mushrooms 
are usually subjected during storage, delivery and 
retail marketing. Therefore, it is important to in-
vestigate and evaluate the prediction capability 
of one-step modelling approach considering the 
microbial growth data of Pseudomonas spp. on 
button mushroom, which is the most extensively 
consumed edible mushroom all over the world, 
at possible temperatures that mushrooms are 
generally subjected to. Additionally, there is no 
published study that compared one-step and two-
step modelling approaches using the microbial 
counts, which directly indicate the microbiological 
quality of food products.

The main objective of this work was to develop 
and validate one-step modelling approach, a pro-
posed alternative way to traditional modelling 
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the most popular sigmoid functions that describe 
the growth behaviour of microorganisms as a func-
tion of time. The modified Gompertz and logistic 
models at constant environmental conditions are 
defined by Eq. 1 and Eq. 2, respectively [20].

The Baranyi and Huang models are other ex-
tensively used primary models that are described 
by Eq. 3 and Eq. 4, respectively [10, 21].

Model equations are given in Tab. 1.
Ratkowsky model was used to determine the 

relationship between storage temperature and the 
maximum specific growth rate (µmax) using Eq. 5:

√𝜇𝜇max = 𝑏𝑏1(𝑇𝑇 − 𝑇𝑇0) 	 (5)

where T is the storage temperature (in degrees 
Celsius), T0 is the theoretical lowest tempera-
ture at which microbial growth is observable (in 
degrees Celsius), µmax is the maximum specific 
growth rate of microorganisms (expressed as natu-
ral logarithm of colony forming units per hour), b1 
is the regression coefficient.

The modified Gompertz and logistic models 
use decadic logarithmic scale, but the Baranyi 
and Huang models use natural logarithmic scale. 
Therefore, the growth rate values (rmax) obtained 
from the modified Gompertz and logistic models 
were multiplied by ln(10) to get the maximum spe-
cific growth rate values (µmax).

The lag phase duration (λ) was correlated with 
the µmax using Eq. (6):

𝜆𝜆 = 𝑏𝑏2
𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚(𝑇𝑇)

 
	

(6)

where b2 is the regression coefficient, µmax(T) is 
the a function of temperature (T) that defines λ as 
a function of storage temperature.

For the traditionally used two-step modelling 
approach, the primary and secondary models were 
separately fitted to the growth data and kinetic 
parameters, respectively. For one-step modelling 
approach, the primary and secondary models were 
simultaneously fitted to Pseudomonas spp. growth 
data and mushroom storage temperature. All pa-
rameters were calculated using NonLinearModel 
command, which uses Levenberg-Marquardt al-
gorithm in the Matlab 8.3.0.532 (R2014a) soft-
ware (MathWorks, Natick, Massachusetts, USA). 
Determination of starting values in the non-linear 
regression procedure is a critical step to estimate 
the accurate parameters. Starting values for the 
parameters, x0/y0 and xmax/ymax were selected as 
the minimum and maximum counts of microor
ganisms at the entire temperature range, respec-
tively. The starting values of b1 and T0 for the 
maximum growth rate and b2 for the lag phase 
duration were estimated by using ga command, 
which uses genetic algorithm in Global Optimiza-
tion Toolbox of the Matlab software so that the es-
timated parameters could not get stuck in possible 
local optimal points.

Comparison of the primary models’  
estimation capacity

Comparison of models regarding how well they 
can describe the observed growth data was done 
with statistical indices such as root mean square 

Tab. 1. Primary models.

Model Equation Number

Modified Gompertz
𝑥𝑥(𝑡𝑡) = 𝑥𝑥0 + (𝑥𝑥max − 𝑥𝑥0) ∙ exp {− exp [

𝑟𝑟max ∙ 𝑒𝑒
(𝑥𝑥max − 𝑥𝑥0)

∙ (𝜆𝜆 − 𝑡𝑡) + 1]} 
1

Logistic
𝑥𝑥(𝑡𝑡) = 𝑥𝑥0 +

(𝑥𝑥max − 𝑥𝑥0)

{1 + exp [ 4 ∙ 𝑟𝑟max
(𝑥𝑥max − 𝑥𝑥0) ∙

(𝜆𝜆 − 𝑡𝑡) + 2]}
 

2

Baranyi

𝑦𝑦(𝑡𝑡) = 𝑦𝑦0 + 𝜇𝜇max𝐹𝐹(𝑡𝑡) − ln(1 + 𝑒𝑒𝜇𝜇max𝐹𝐹(𝑡𝑡) − 1 
𝑒𝑒(𝑦𝑦max−𝑦𝑦0) ) 

3

Huang 𝑦𝑦(𝑡𝑡) = 𝑦𝑦0 + 𝜇𝜇max − ln(𝑒𝑒𝑦𝑦0 + [𝑒𝑒𝑦𝑦max − 𝑒𝑒𝑦𝑦0] ∙ 𝑒𝑒−𝜇𝜇max𝐵𝐵(𝑡𝑡)) 4

t – time (in hours); x(t) – count of microorganisms at time t (expressed as logarithm of colony forming units per gram); x0 – initial 
count of microorganisms (expressed as logarithm of colony forming units per gram); xmax – maximum count of microorganisms 
(expressed as logarithm of colony forming units per gram); rmax – growth rate (expressed as logarithm of colony forming units 
per hour); λ – lag phase duration (in hours); y(t) – count of microorganisms (expressed as natural logarithm of colony forming 
units per gram) at time t; y0 – initial count of microorganisms (expressed as natural logarithm of colony forming units per gram); 
ymax – maximum count of microorganisms (expressed as natural logarithm of colony forming units per gram); µmax – maximum 
specific growth rate of microorganisms (expressed as natural logarithm of colony forming units per hour); F(t) – adjustment 
function described by Baranyi and Roberts [21]; B(t) – adjustment functionsdescribed by Huang [10].
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error (RMSE) and adjusted coefficient of deter-
mination (R2adj) values given by Eq. 7 and Eq. 8, 
respectively:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √∑
(𝑥𝑥obs − 𝑥𝑥fit)2

𝑛𝑛 − 𝑠𝑠

𝑛𝑛

𝑖𝑖=1
 

	 (7)

𝑅𝑅adj
2 = 1 − (𝑛𝑛 − 1

𝑛𝑛 − 𝑠𝑠) (
𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆) 

	 (8)

where xobs is the value obtained in experiments, xfit 
is the fitted value, n is the number of observations, 
s is the number of parameters of the model, SSE is 
the sum of squared residuals and SST is the total 
sum of squares. 

Because the primary models use different scale 
for the counts of microorganisms, RMSE values of 
the modified Gompertz and logistic models cannot 
be directly compared with RMSE value of the 
Baranyi and Huang models. Therefore, the con-
version from the natural logarithm scale to dec-
adic logarithm scale was done to compare RMSE 
values of all the primary models.

Statistical analysis
RMSE and R2adj values obtained from two-step 

and one-step modelling approaches were sub-
jected to one-way analysis of variance (ANOVA) 
using the Matlab 8.3.0.532 (R2014a) software. 
Statistical differences between the modelling ap-
proaches were determined by post hoc analysis 
using Tukey’s test. The differences between the 
means were regarded as statistically significant if 
p ≤ 0.05.

Validation of the global model
Validation is a necessary step in predictive 

food microbiology needed for reliable use of the 
models considering the independent experimen-
tal data. Therefore, literature search was done for 
validation of the global model, which is developed 
in order to predict Pseudomonas spp. counts on 
the button mushrooms, and independent exter-
nal growth data were collected from a previously 
published work on button mushrooms [22]. In 
this study, data collection for validation was per-
formed using image processing toolbox by which 
the growth data points could be extracted accu-
rately to Matlab 8.3.0.532 (R2014a). Twenty-three 
growth data were used to perform model valida-
tion. Comparison of experimental growth data 
with the predicted data was done with the bias (Bf) 
and accuracy (Af) factors [23–25] given in Eq. 9 
and Eq. 10, respectively:

𝐵𝐵𝑓𝑓 = 10
∑ log(𝑥𝑥pred 𝑥𝑥obs⁄ )𝑛𝑛
𝑖𝑖=1

𝑛𝑛  	 (9)

𝐴𝐴𝑓𝑓 = 10
∑ log(𝑥𝑥pred 𝑥𝑥obs⁄ )𝑛𝑛
𝑖𝑖=1

𝑛𝑛  	 (10)

where xpred refers to Pseudomonas spp. counts (ex-
pressed as logarithm of colony forming units per 
gram), xobs refers to experimental Pseudomonas 
spp. counts (expressed as logarithm of colony 
forming units per gram), n refers to the number of 
experimental growth data. 

Bf and Af show how close are simulated data 
to experimental data, value of 1 for both Bf and Af 
meaning that there is a perfect agreement between 
experimental and predicted Pseudomonas spp. 
count data. Additionally, two validation criteria 
known as mean deviation (MD) and mean abso-
lute deviation (MAD) were calculated to assess 
the prediction capability of the models, as stated 
by Le Marc et al. [26]. A value of MD and MAD 
close to 0 shows that the prediction capability of 
the model is perfect.

Results and discussion

The experimental Pseudomonas spp. counts 
collected from the previously published curves 
for button mushrooms at the storage tempera-
tures of 4, 12, 20 and 28 °C were modelled using 
two-step and one-step modelling approaches 
(Tab. 2 and Tab. 3). The initial bacterial 
counts of Pseudomonas spp. were on average 
7.05 ± 0.14 log CFU·g-1 for all temperatures. 
Storage duration was directly related to storage 
temperature and ranged from 240  h to 84  h 
(10  days to 3.5 days) with an increase in storage 
temperature from 4 °C to 28 °C. The Pseudomonas 
spp. counts could reach the level ranging from 
8.64 ± 0.13 log CFU·g-1 to 10.76 ± 0.05 log CFU·g-1 
at the end of storage depending on the storage 
temperature (Tab. 1 and Tab. 2). This demonstrat-
ed that the growth potential of Pseudomonas spp. 
on button mushrooms was enhanced with the in-
creasing storage temperature.

The goodness-of-fit of all primary models in-
volved in the traditionally used two-step model-
ling approach was evaluated by calculating their 
RMSE and R2adj values (Tab. 4). The RMSE values 
obtained from the primary models based on the 
two-step modelling approach were between 0.549 
and 0.490, and R2adj values were between 0.826 
and 0.861. Among four different primary models, 
the Baranyi model yielded the lowest RMSE and 
the highest R2adj values. This means that the fit-
ting capability of the Baranyi model was superior 
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over other primary models when two-step 
modelling was used to describe the growth 
behaviour of Pseudomonas spp. on button 
mushrooms.

The RMSE and R2adj values of all the 
primary models based on one-step model-
ling approach ranged from 0.294 to 0.299 
and from 0.948 to 0.950, respectively. The 
Baranyi model had the best goodness-of-
fit parameters, similar as in the two-step 
modelling approach, but there was no sig-
nificant differences (p > 0.05) between 
primary models when they were employed 
in one-step modelling approach. The statis-
tical evaluation regarding the fitting capa-
bility of the primary models based on one 
one-step modelling approach showed that 
the fitting capability of the primary mod-
els was better than that of the traditionally 
used two-step modelling approach. These 
results showed that one-step modelling ap-
proach could be reliably used for estima-
tion of Pseudomonas spp. counts on button 
mushrooms.

The degrees of freedom of the one-step 
modelling approach proposed in this study 
was 85 (the number of observations – the 
number of parameters in the global mod-
el), but the degrees of freedom of the tra-
ditional two-step modelling approach used 
by Tarlak et al. [19] was only 2 for the 
Ratkowsky model and was maximum 20 for 
the Baranyi model at various temperatures 
ranging from 4 °C to 28 °C. It is important 
to underline that especially Ratkowsky 
model with a low degree of freedom might 
be regarded as giving the results which are 
suspicious and uncertain. From this point 
of view, the one-step modelling approach 
has higher degree of freedom, which de-
creases confidence intervals and uncertain-
ty of the parameters compared to the tradi-
tionally used two-step modelling approach 
[13, 14]. Therefore, no matter which prima-
ry model was used, the one-step modelling 
approach significantly (p < 0.05) improved 
the prediction capability of the models for 
quantitative description of Pseudomonas 
spp. counts on button mushrooms.

When the one-step modelling approach 
was used, the minimum counts of Pseu-
domonas spp. were found to be 7.02 ± 0.11 
log CFU·g-1, 6.70 ± 0.19 log CFU·g-1, 
7.06 ± 0.07 log CFU·g-1 and 7.10 ± 0.07 
log CFU·g-1 for the modified Gompertz, 
logistic, Baranyi and Huang models, 
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respectively (Tab. 4). The experimental mini-
mum counts were between 6.91 log CFU·g-1 and 
7.19 log CFU·g-1 corresponding to an average of 
7.05 ± 0.14 log CFU·g-1, which showed that all pri-
mary models except for the logistic model success-
fully estimated the minimum Pseudomonas spp. 
populations on button mushrooms. 

The one-step modelling approach 
showed that maximum counts of Pseu-
domonas spp. were 11.03 ± 0.21 log CFU·g-1, 
10.82 ± 0.16 log CFU·g-1, 10.63 ± 0.10 log CFU·g-1 
and 10.67 ± 0.11 log CFU·g-1 for the modi-
fied Gompertz, logistic, Baranyi and Huang 
models, respectively (Tab. 4). The maximum 
counts were experimentally found to be chang-
ing within the range of 8.64 ± 0.13 log CFU·g-1 
to 10.76 ± 0.05 log CFU·g-1. This indicated that 
the Baranyi and Huang models provided better 
prediction performance for maximum counts in 
comparison with modified Gompertz and logistic 
models.

The µmax and λ values play a critical role in the 
description of microbial growth behaviour, and 
temperature is one of the most important envi-
ronmental factors directly affecting both of these 
growth kinetic parameters [23]. In this work, µmax 
and λ values were not directly given in Tab. 4 when 
the one-step modelling approach was employed. 
Instead, b1, b2 and T0, the other parameters de-
riving from the secondary Ratkowsky model 
and being directly related to µmax and λ, were 
presented in Tab. 4. Concerning the secondary 
model’s parameter T0, its estimated valued were 
–13.59 ± 0.83 °C, –13.54 ± 0.81 °C, –13.70 ± 0.80 °C 
and –13.73 ± 0.83 for the modified Gompertz, lo-
gistic, Baranyi and Huang models, respectively 
(Tab. 4). At this point, it needs to be highlighted 
that the estimated T0, which is the temperature-

intercept of the Ratkowsky model, refers only to 
the theoretical lowest temperature, which can 
be much lower than that actually observed [25]. 
Although this value is not quite logical, neverthe-
less it gives the idea that Pseudomonas spp. can 
proliferate extensively on button mushrooms as 
they are a nutrient-rich substrate for their growth. 
Taking into account the secondary model’s pa-
rameters (b1, b2 and T0) given in Tab. 4, µmax in-
creased from 0.029 h-1 to 0.164 h-1, from 0.029 h-1 
to 0.164 h-1, from 0.029 h-1 to 0.160 h-1 and from 
0.027  h-1 to 0.149  h-1 with the increasing storage 
temperature for the modified Gompertz, logistic, 
Baranyi and Haung models, respectively (Fig.  1). 
An exact opposite tendency was observed for λ de-
creasing from 55.0 h to 9.8 h, from 33.9 h to 6.1 h, 
from 58.1 h to 10.5 h  and 52.1 h to 9.4 h for the 
modified Gompertz, logistic, Baranyi and Haung 
models, respectively, as the temperature was in-
creased from 4 °C to 28 °C (Fig. 2). These results 
reflect the facts that µmax and λ values are inverse-
ly correlated and mushrooms should be kept at 
low temperatures in order to reduce their micro-
bial contamination.

All of the primary models involved in the one-
step modelling approach yielded high goodness-
of-fit values. Therefore, the prediction capabil-
ity of each primary model was evaluated. For this 
purpose, the data predicted by all primary models 
based on one-step modelling approach and the 
previously published growth data by Wang et al. 
[22] for Pseudomonas spp. on mushrooms were 
compared, statistical values for validation of the 
models are given in Tab. 5. Bf and Af were respec-
tively calculated as 0.99 and 1.03 by the Baranyi 
model, both being the closest to 1 among all pri-
mary models. These results indicated that the 
Baranyi model involved in one-step modelling 
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Fig. 2. The effect of storage temperature 
on lag phase duration.

0

10

20

30

40

50

60

0 5 10 15 20 25 30

La
g

 p
ha

se
 d

ur
at

io
n

[h
]

Temperature [°C]

Modified Gompertz model

Logistic model

Baranyi model

Huang model



Tarlak, F. et al.	 J. Food Nutr. Res., Vol. 59, 2020, pp. 281–289

288

approach had the best capability to predict Pseu-
domonas spp. counts on mushrooms stored at 
temperatures ranging from 4 °C to 28 °C. MD and 
MAD values obtained for Baranyi model based 
on the one-step modelling approach were found 
to be –0.09 log CFU·g-1 and 0.21 log CFU·g-1, 
respectively. The MD value of –0.09 log CFU·g-1 
indicated that on average the global model over-
estimated 0.09 log CFU·g-1, while the MAD value 
of 0.21 log CFU·g-1 showed that on average the 
predicted values were 0.21 log CFU·g-1 different 
(either higher or lower) from the observed ones. 
All these prediction performance indices revealed 
that the Baranyi model developed in this work 
considering the one-step modelling approach can 
be reliably used to predict the Pseudomonas spp. 
counts on the button mushrooms stored for any 
time and at any temperature ranging from 4 °C to 
28 °C (Fig. 3). The modelling approach described 

in this work with accurate and robust predic-
tion performance provided valuable information 
for performing quantitative prediction of Pseu-
domonas spp. counts on button mushrooms.

Conclusions

The fitting capability of the modified Gom-
pertz, logistic, Baranyi and Huang models, which 
are the most popular primary models describ-
ing the microbial growth as a function of time at 
constant environmental conditions, were firstly 
compared employing the two-step modelling 
approach. The Baranyi model yielded the best fit-
ting performance when it was employed in the tra-
ditionally used two-step modelling approach. The 
fitting capability of all the primary models was also 
compared using the one-step modelling approach 
proposed in this study. No matter which primary 
model was used, the one-step modelling approach 
significantly (p < 0.05) improved the prediction 
capability of the models for the quantitative de-
scription of Pseudomonas spp. counts on button 
mushrooms. The successfully validated Baranyi 
model involved in one-step modelling approach 
exhibited considerable potential to be used for 
prediction of Pseudomonas spp. counts as a func-
tion of time and storage temperature, if the initial 
counts are known. Hence, this global model could 
be employed as a more accurate and robust alter-
native to the traditionally used two-step modelling 
approach to determine the microbial spoilage of 
mushrooms, as Pseudomonas spp. counts are a re-
liable indicator of spoilage.

References

	 1.	Moradian, S. – Almasi, H. – Moini, S.: Development 
of bacterial cellulose-based active membranes con-
taining herbal extracts for shelf life extension of 
button mushrooms (Agaricus bisporus). Journal of 
Food Processing and Preservation, 42, 2018, article 
e13537. DOI: 10.1111/jfpp.13537.

	 2.	Wani, B. A. – Bodha, R. H. – Wani, A. H.: Nutritional 
and medicinal importance of mushrooms. Journal of 
Medicinal Plants Research, 4, 2010, pp. 2598–2604. 
DOI: 10.5897/JMPR09.565.

	 3.	Valverde, M. E. – Hernández-Pérez, T. – Paredes-
López, O.: Edible mushrooms: improving human 
health and promoting quality life. International 
Journal of Microbiology, 2015, 2015, article ID 
376387. DOI: 10.1155/2015/376387.

	 4.	Simón, A. – González-Fandos, E.: Effect of washing 
with citric acid or sodium hypochlorite on the visual 
and microbiological quality of mushrooms (Agaricus 
bisporus L.). Journal of Food Quality, 33, 2010, 

Tab. 5. Validation criteria of the primary models 
involved in the one-step modelling approach.

Primary Models
Validation criteria

Bf Af MD MAD

Modified Gompertz 1.01 1.04 0.04 0.25

Logistic 0.93 1.08 0.41 0.44

Baranyi 0.99 1.03 –0.09 0.21

Huang 0.97 1.04 –0.21 0.25

Bf – bias factor; Af – accuracy factor; MD – mean deviation; 
MAD – mean absolute deviation.

3

4

5

6

7

8

9

10

3 4 5 6 7 8 9 10

P
re

d
ic

te
d

p
op

ul
at

io
ns

 [
lo

g
 C

FU
·g

-1
]

Observed populations [log CFU·g-1]

10 °C
16 °C
22 °C

Fig. 3. Observed and predicted Pseudomonas spp. 
populations on button mushrooms.

The observed data were collected from Wang et al. [22].

https://doi.org/10.1111/jfpp.13537
https://doi.org/10.5897/JMPR09.565
https://doi.org/10.1155/2015/376387


	 Prediction of mushroom spoilage by one-step modelling approach

	 289

pp. 273–285. DOI: 10.1111/j.1745-4557.2010.00322.x.
	 5.	Venturini, M. E. – Reyes, J. E. – Rivera, C. S.  – 

Oria,  R. – Blanco, D.: Microbiological quality and 
safety of fresh cultivated and wild mushrooms com-
mercialized in Spain. Food Microbiology, 28, 2011, 
pp. 1492–1498. DOI: 10.1016/j.fm.2011.08.007.

	 6.	Pérez-Rodríguez, F. – Valero, A.: Predictive 
Microbiology in Foods. New York : Springer,  2013. 
ISBN: 9781461455202. DOI: 10.1007/978-1-4614-
5520-2.

	 7.	Wang, J. – Rahman, S. M. E. – Zhao, X. H. – 
Forghani, F. – Park, M. S. – Oh, D. H.: Predictive 
models for the growth kinetics of Listeria monocy-
togenes on white cabbage. Journal of Food Safety, 
33, 2013, pp. 50–58. DOI: 10.1111/jfs.12022.

	 8.	Whiting, R. C.: Microbial modeling in foods. Critical 
Reviews in Food Science, 35, 1995, pp. 467–494. 
DOI: 10.1080/10408399509527711.

	 9.	Ratkowsky, D. A. – Olley, J. – McMeekin, T.  A.  – 
Ball,  A.: Relationship between temperature 
and growth rate of bacterial cultures. Journal of 
Bacteriology, 149, 1982, pp. 1–5. DOI: 10.1128/
JB.149.1.1-5.1982.

	10.	Huang, L.: IPMP Global Fit – A one-step direct 
data analysis tool for predictive microbiology. 
International Journal of Food Microbiology, 
262, 2017, pp. 38–48. DOI: 10.1016/j.ijfoodmi-
cro.2017.09.010.

	11.	McKellar, R. C.: A heterogeneous population 
model for the analysis of bacterial growth kinet-
ics. International Journal of Food Microbiology, 
36, 1997, pp. 179–186. DOI: 10.1016/S0168-
1605(97)01266-X.

	12.	Swinnen, I. A. M. – Bernaerts, K. – Dens, E.  J.  – 
Geeraerd, A. H. – Van Impe, J. F.: Predictive 
modelling of the microbial lag phase: a  review. 
International Journal of Food Microbiology, 
94, 2004, pp. 137–159. DOI: 10.1016/j.ijfoodmi-
cro.2004.01.006.

	13.	Jewell, K.: Comparison of 1-step and 2-step methods 
of fitting microbiological models. International 
Journal of Food Microbiology, 160, 2012, pp. 145–161. 
DOI: 10.1016/j.ijfoodmicro.2012.09.017.

	14.	Martino, K. G. – Marks, B. P.: Comparing uncer-
tainty resulting from two-step and global regression 
procedures applied to microbial growth models. 
Journal of Food Protection, 70, 2007, pp. 2811–2818. 
DOI: 10.4315/0362-028X-70.12.2811.

	15.	Hereu, A. – Dalgaard, P. – Garriga, M. – 
Aymerich, T. – Bover-Cid, S.: Analysing and model-
ling the growth behaviour of Listeria monocytogenes 
on RTE cooked meat products after a high pressure 
treatment at 400 MPa. International Journal of Food 
Microbiology, 186, 2014, pp. 84–94. DOI: 10.1016/j.
ijfoodmicro.2014.06.020.

	16.	Manthou, E. – Tarlak, F. – Lianou, A. – Ozdemir, M. – 
Zervakis, G. I. – Panagou, E. Z. Nychas, G. J. E.: 
Prediction of indigenous Pseudomonas spp. growth 
on oyster mushrooms (Pleurotus ostreatus) as a func-

tion of storage temperature. LWT - Food Science and 
Technology, 111, 2019, pp. 506–512. DOI: 10.1016/j.
lwt.2019.05.062.

	17.	Huang, L.: Direct construction of predictive models 
for describing growth of Salmonella enteritidis in 
liquid eggs – A one-step approach. Food con-
trol, 57, 2015, pp. 76–81. DOI: 10.1016/j.food-
cont.2015.03.051.

	18.	Huang, L.: Mathematical modeling and valida-
tion of growth of Salmonella enteritidis and back-
ground microorganisms in potato salad – One-
step kinetic analysis and model development. Food 
Control, 68, 2016, pp. 69–76. DOI: 10.1016/j.food-
cont.2016.03.039.

	19.	Tarlak, F. – Ozdemir, M. – Melikoglu, M.: Predictive 
modelling for the growth kinetics of Pseudomonas 
spp. on button mushroom (Agaricus bisporus) under 
isothermal and non-isothermal conditions. Food 
Research International, 130, 2020, article 108912. 
DOI: 10.1016/j.foodres.2019.108912.

	20.	Zwietering, M. H. – Jongenburger, I. – 
Rombouts,  F.  M. – van’t Riet, K.: Modeling of the 
bacterial growth curve. Applied and Environmental 
Microbiology, 56, 1990, pp. 1875–1881. DOI: 0099-
2240/90/061875-07$02.00/0.

	21.	Baranyi, J. – Roberts, T. A.: A dynamic approach to 
predicting bacterial growth in food. International 
Journal of Food Microbiology, 23, 1994, pp. 277–294. 
DOI: 10.1016/0168-1605(94)90157-0.

	22.	Wang, J. – Chen, J. – Hu, Y. – Hu, H. – Liu,  G. – 
Yan, R.: Application of a predictive growth model 
of Pseudomonas spp. for estimating shelf life of fresh 
Agaricus bisporus. Journal of Food Protection, 80, 
2017, pp. 1676–1681. DOI: 10.4315/0362-028X.JFP-
17-055.

	23.	Huang, L.: Growth kinetics of Listeria monocy-
togenes in broth and beef frankfurters - deter-
mination of lag phase duration and exponential 
growth rate under isothermal conditions. Journal 
of Food Science, 73, 2008, pp. E235–242. DOI: 
10.1111/j.1750-3841.2008.00785.x.

	24.	Koutsoumanis, K.: Predictive modeling of the 
shelf life of fish under nonisothermal conditions. 
Applied and Environmental Microbiology, 67, 
2001, pp. 1821–1829. DOI: 10.1128/AEM.67.4.1821-
1829.2001.

	25.	Ross, T.: Indices for performance evaluation of 
predictive models in food microbiology. Journal of 
Applied Bacteriology, 81, 1996, pp. 501–508. DOI: 
10.1111/j.1365-2672.1996.tb03539.x.

	26.	Le Marc, Y. – Plowman, J. – Aldus, C. F. – Munoz-
Cuevas, M. – Baranyi, J. – Peck, M. W.: Modelling 
the growth of Clostridium perfringens during the 
cooling of bulk meat. International Journal of Food 
Microbiology, 128, 2008, pp. 41–50. DOI: 10.1016/j.
ijfoodmicro.2008.07.015.

Received 8 July 2020; 1st revised 18 August 2020; accepted 
25 September 2020; published online 4 October 2020.

https://doi.org/10.1111/j.1745-4557.2010.00322.x
https://doi.org/10.1016/j.fm.2011.08.007
https://doi.org/10.1007/978-1-4614-5520-2
https://doi.org/10.1007/978-1-4614-5520-2
https://doi.org/10.1111/jfs.12022
https://doi.org/10.1080/10408399509527711
https://doi.org/10.1128/JB.149.1.1-5.1982
https://doi.org/10.1128/JB.149.1.1-5.1982
https://doi.org/10.1016/j.ijfoodmicro.2017.09.010
https://doi.org/10.1016/j.ijfoodmicro.2017.09.010
https://doi.org/10.1016/S0168-1605(97)01266-X
https://doi.org/10.1016/S0168-1605(97)01266-X
https://doi.org/10.1016/j.ijfoodmicro.2004.01.006
https://doi.org/10.1016/j.ijfoodmicro.2004.01.006
https://doi.org/10.1016/j.ijfoodmicro.2012.09.017
https://doi.org/10.4315/0362-028X-70.12.2811
https://doi.org/10.1016/j.ijfoodmicro.2014.06.020
https://doi.org/10.1016/j.ijfoodmicro.2014.06.020
https://doi.org/10.1016/j.lwt.2019.05.062
https://doi.org/10.1016/j.lwt.2019.05.062
https://doi.org/10.1016/j.foodcont.2015.03.051
https://doi.org/10.1016/j.foodcont.2015.03.051
https://doi.org/10.1016/j.foodcont.2016.03.039
https://doi.org/10.1016/j.foodcont.2016.03.039
https://doi.org/10.1016/j.foodres.2019.108912
DOI: https://doi.org/0099-2240/90/061875-07$02.00/0
DOI: https://doi.org/0099-2240/90/061875-07$02.00/0
https://doi.org/10.1016/0168-1605(94)90157-0
https://doi.org/10.4315/0362-028X.JFP-17-055
https://doi.org/10.4315/0362-028X.JFP-17-055
https://doi.org/10.1111/j.1750-3841.2008.00785.x
https://doi.org/10.1128/AEM.67.4.1821-1829.2001
https://doi.org/10.1128/AEM.67.4.1821-1829.2001
https://doi.org/10.1111/j.1365-2672.1996.tb03539.x
https://doi.org/10.1016/j.ijfoodmicro.2008.07.015
https://doi.org/10.1016/j.ijfoodmicro.2008.07.015

