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Fish represents an important component of 
the diet in highly developed countries, although it 
is not a staple in these societies except for some 
coastal areas. However, mainly due to the health 
benefits of the consumption of fish compared to 
other meat, its role as a component of the diet is 
highly important and a tendency towards the in-
creased consumption of fish meat can be viewed as 
positive.

In this context, it is becoming critical to con-
trol the fish market of developed countries, also 
regarding the proper labelling according to the 
zoological origin of the traded fish. This is impor-
tant economically, as mislabelling can result from 
the fraudulent substitution of species of high value 
with some less expensive fish. Proper labelling is 
also important in terms of the impact on health 
as fish parvalbumin can trigger allergic reactions 
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results at a higher specificity provided by the em-
ployment of a probe. Some such assays were con-
structed based on the available DNA sequences of 
the fish parvalbumin gene [3, 4, 38, 39]. 

Among end-point PCR-based detection tools, 
those targeting mitochondrial genes used to be 
held in high esteem [31, 38, 40, 41]. The high copy 
number of mitochondrial genes in each cell is one 
of the reasons for their popularity. On the other 
hand, the intron regions of nuclear genes can fully 
serve as an equivalent alternative [14, 42–45]. 
While the coding parts of nuclear genes are under 
selection pressure and, therefore, their sequences 
are quite uniform among species, hence not suit-
able for species determination, intron regions are 
free of this unification, and are diverse enough to 
serve as a platform for species identification by 
PCR. Moreover, adjacent exon regions, due to 
their high level of unification, allow for the design 
of degenerate primers, fish-versatile, usable for 
species-specific intron sequence mining by PCR 
derived from these neighbouring exon regions. 
Such a system provides a useful tool for a relative-
ly quick development of particular species-specific 
detection variants of PCR for tracing fish species 
that are newly emerging on the market [42]. 

An approach based on the nuclear intron se-
quence of the parvalbumin gene was designed 
for black seabream (Spondyliosoma cantharus) as 
a model species and later tested in the end-point 
PCR format as an interlaboratory study as well, 
proving data on its robustness for routine employ-
ment. In this fish species, the gene is composed of 
four exons, separated by three introns in a unique 
way. The length of the second intron seems to 
make it the most suitable for designing PCR for 
the discrimination of fish species [46]. To provide a 
higher specificity, it is possible to upgrade the for-
mat of PCR to the level of real-time PCR, which 
employs a labelled probe as an additional selec-
tion tool based on sequence complementarity in 
addition to the pairing of specific primers. 

In this work, interlaboratory assessment of such 
real-time PCR with TaqMan probe detection of 
model fish species S. cantharus was accomplished. 
Encoded samples of black seabream (S. cantharus) 
were detected by the developed real-time PCR 
system in five participating laboratories among 
a  panel of 19 other fish species. In parallel, ab-
sence of PCR inhibition by the matrix was tested 
in parallels to all samples with no specific ampli-
fication, or by spiking these parallels with S. can-
tharus DNA up to the level of 10 %, or by an in-
ternal positive control providing an amplification 
signal at a different wavelength than that of the 
S. cantharus probe.

in sensitive consumers [1–4]. The severity of the 
reaction varies, according to some reports, for 
each individual patient based on the particular 
species of fish [1, 5–7]. Therefore, it is critical to 
have tools available for determination of fish 
species, which would be versatile enough to re-
spond, in a relatively short time, to the emergence 
of new fish species as a commodity on the market. 

In the first instance, the species can be deter-
mined based on morphological traits [8]. Basically, 
this approach is the simplest, and also the easiest 
as well as most straightforward. Nevertheless, for 
routine and large-scale testing of species iden-
tity of traded fish within the worldwide market, it 
is basically useless for a number of reasons: 1.  It 
provides, in fact, no possibility for automation, 
2.  there is a minimum chance for harmonization, 
3. fish traded and imported, for instance, to land-
locked countries are often compressed and frozen 
into large blocks suitable for handling, 4. to be 
able to fully cope with the issue of species determi-
nation, detection of processed and/or heat treated 
fish meat in complex food or served meals is re-
quired to be feasible.

To address these issues, establishment of a la
boratory detection method, based on the previous 
morphological approach employed in the develop
ment of such a tool, seems to ideally fulfill this 
need. 

For example, there exists a variety of protein-
based analytical methods for the determination of 
fish species, such as protein electrophoresis [9, 10], 
two-dimensional electrophoresis (2-DE) [11, 12], 
isoelectric focusing [13, 14], urea isoelectric focus-
ing [10] or capillary electrophoresis [15]. Immu
nological methods complement them [16, 17]. 
Other approaches for determination of the spe-
cies origin of fish meat are based on chemometry 
[18–20]. Mass spectrometry can also be success-
fully employed to reach this goal [11, 21, 22].

Another approach to determination of biologi-
cal characteristics of analysed food is represented 
by methods from the molecular biology domain. 
These include methods based on polymerase 
chain reaction (PCR) applied to determination of 
the taxonomic identity of plant [23–29] or animal 
food sources [7, 8, 30]. Various combinations of 
all of the aforementioned approaches also appear 
as detection tools in use. Restriction fragment 
length polymorphism (RFLP) is also widely used 
as the further development of PCR-based methods 
[31–36]. Single strand conformation polymor-
phism (SSCP) can also be used as the final stage of 
these PCR-based methods [33, 37].

Another concept relies on a real-time PCR 
format, which allows for obtaining quantitative 
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Materials and methods

Design of the study
Samples of DNA isolates were shipped in 

a parcel to the participating laboratories, each 
sample marked by a numerical code, without any 
information on identity of the fish species. At the 
same time, standard DNA of black seabream, iso-
lated from another exemplar, was shipped in five 
concentrations (50; 25; 6.25; 1.56 and 0.78 ng·µl-1) 
together with unknown samples. Guidelines uni-
fying the critical steps of the analytical procedure 
were attached. 

Interlaboratory study participants 
Five laboratories participated in this study: 

1. Food Research Institute Prague, Czech Repub-
lic (FRIP); 2. University of Chemistry and Tech-
nology, Prague, Czech Republic (UCT); 3.  Matís 
Ltd., Reykjavík, Iceland (MATIS); 4. Food Re-
search Institute, National Agricultural and Food 
Centre, Bratislava, Slovakia (FRI-NAFC); 5.  Na-
tional Institute of Public Health, Centre for 
Health, Nutrition and Food, Brno, Czech Repub-
lic (NIPH)

Sample material
Eight black seabreams and 19 other fish spe-

cies were bought from the commercial network in 
the Czech Republic. An overview of the tested fish 
species is provided in Tab. 1. The identity of the 
purchased fish species was taken from the label 
and confirmed by morphological traits. The fish 
species composing the panel of negative controls 
were selected in a way to represent, in an unbi-
ased manner, the entire range of the phylogenetic 
system of fish.

DNA isolation
DNA was isolated from mechanically homo

genized fish material using a method based on 
the use of an ionic detergent, cetyltrimethyl
ammonium bromide (CTAB; Carl Roth, 
Karlsruhe, Germany). The extraction was done ac-
cording to EN ISO 21571:2005 [47] with modifica-
tions, when phenol-chlorophorm-isoamyl alcohol 
mixture was substituted by chlorophorm-isoamyl 
alcohol, liquid nitrogen freezing was omitted and 
isopropanol precipitation was implemented. DNA 
quality and quantity was checked by electropho-
resis in 1% Serva Premium agarose gel (Serva, 
Heidelberg, Germany) and determined photomet-
rically using NanoDrop (Implen, München, Ger-
many). The isolated DNA was adjusted to a con-
centration of 25 ng·µl-1. All DNA samples were 
coded by numbers (101–146).

Design of the probe and primers
The primers and the probe were designed 

based on previous knowledge of the sequence 
(accession number JN671445.1, National Center 
for Biotechnology Information, Bethesda, Mary-
land, USA) of the second intron of the protein-
coding section of the parvalbumin gene, obtained 
in previous work performed in an end-point for-
mat [42]. Therefore, the starting stretch of the 
real-time PCR amplified sequence of the intron 
was pre-defined by the known position of the 
end-point PCR primers [46]. Further placement 
of primers and the dual-labelled probe were de-
signed using PrimerExpress 3.0 software (Applied 
Biosystems, Foster City, California, USA) to ful-
fill the required criteria. From the sets of primers 
and probe suggested by the software, the forward 
primer (1189B6: TGA GCT GAA GTA AGA 
CAC TCA GGA A), reverse primer (1189B7: 
TCT AAA ATG TTG TCT TGG TGC CTT AG) 
and dual-labelled probe (1273H9: TGC ACA 
CTT GAG CAA GCA ATG GCC) were selected. 
The probe was used as a TaqMan-type probe la-
belled with 6-carboxyfluorescein (FAM) as a re-
porter dye and Black Hole Quencher 1 (BHQ1) as 
a quencher. All oligonucleotides were synthetized 
by Generi Biotech (Hradec Králové, Czech Re-
public).

Real-time PCR 
Real-time PCR was conducted on five differ-

ent platforms, as presented in Tab. 2. All reac-
tions contained 10 µl of 2× TaqMan Environmen-
tal Master Mix 2.0 (Life Technologies, Carlsbad, 
California, USA), which contained Rox Refer-
ence Dye (ROX; glycine conjugate of 5-carboxy-
X-rhodamine, succinimidyl ester) as a passive 
reference dye, primers at a final concentration of 
0.4 mmol.l-1, 0.1 mmol.l-1 probe, 50 ng of template 
DNA and nuclease-free water, the total reaction 
volume being 20 µl. The following thermal cycle 
profile was used: initial denaturation and poly-
merase activation at 95 °C for 10  min, 35 cycles 
with denaturation at 95 °C for 15 s and anneal-
ing with polymerization at 60 °C for 60 s. Fluo-
rescence was measured as relative fluorescence 
units (RFU) and plotted as baseline-corrected 
normalized reporter (∆Rn), i.e. the magnitude of 
normalized fluorescence signal from which nor
malized signal of baseline was subtracted.

In one extra experiment to test robustness in 
this respect, a pre-mixed reaction mixture qPCR 
ProbesMaster with lowROX (Jena Bioscience, 
Jena, Germany) was used as an alternative, under 
otherwise same conditions. 

In the experiments, all samples  were measured 
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Tab. 2. List of participating laboratories and instruments used.

Laboratory Real-time instrument

FRIP StepOnePlus (Applied Biosystems, Foster City. California, USA)

UCT ABI 7500 (Applied Biosystems, Foster City. California, USA)

MATIS Stratagene MX3005P (Agilent, Santa Clara, California, USA )

FRI-NAFC Opticon 2 (MJ Research, Waltham,  Massachusetts,  USA) 

NIPH ABI 7900HT Fast ((Applied Biosystems, Foster City. California, USA)

FRIP – Food Research Institute Prague, Czech Republic; UCT – University of Chemistry and Technology, Prague, Czech Republic; 
MATIS – Matís Ltd., Reykjavík, Iceland; FRI-NAFC – Food Research Institute, National Agricultural and Food Centre, Bratislava, 
Slovakia; NIPH – National Institute of Public Health, Centre for Health, Nutrition and Food, Brno, Czech Republic.

Tab. 1. Summary of qualitative results.

Sample 
code

Fish species

Reaction mixture
Agreement 

[%]
A B

FRIP UCT MATIS FRI-NAFC NIPH FRIP

101 Salmon (Salmo salar) – – – – – – 100

102 European carp (Cyprinus carpio) – – – – – – 100

103 Black seabream (Spondyliosoma cantharus) 1 + + + + + + 100

104 Atlantic bluefin tuna (Thunnus thynnus) – – – – – – 100

105 Black seabream (Spondyliosoma cantharus) 2 + + + + + + 100

106 Black seabream (Spondyliosoma cantharus) 3 + + + + + + 100

107 Brook trout (Salvelinus fontinalis) – – – – – – 100

108 Mahi-mahi (Coryphaena hippurus) – – – – – – 100

109 European seabass (Dicentrarchus labrax) – – – – – – 100

110 Tilapia (Oreochromis niloticus) – – – – – – 100

111 Black seabream (Spondyliosoma cantharus) 4 + + + + + + 100

112 Atlantic herring (Clupea harengus) – – – – – – 100

113 Black seabream (Spondyliosoma cantharus) 5 + + + + + + 100

114 European hake (Merluccius gayi) – – – – – – 100

115 Northern pike (Esox lucius) – – – – – – 100

116 Pangasius (Pangasius hypophthalmus) – – – – – – 100

117 Carassius (Carassius carassius) – – – – – – 100

118 Tench (Tinca tinca) – – – – – – 100

119 Garfish (Belone belone) – – – – – – 100

120 Black seabream (Spondyliosoma cantharus) 6 + + + + + + 100

121 European eel (Anguilla anguilla) – – – – – – 100

122 Black seabream (Spondyliosoma cantharus) 7 + + + + + + 100

123 Silver carp (Hypophtalmichthys molitrix) – – – – – – 100

124 Common sole (Solea solea) – – – – – – 100

125 Red scorpionfish (Scorpena scrofa) – – – – – – 100

126 Black seabream (Spondyliosoma cantharus) 8 + + + + + + 100

127 Angler (Lophius piscatorius) – – – – – – 100

A – TaqMan Environmental Master Mix 2.0 (Life Technologies, Carlsbad, California, USA), B – qPCR Probes Master with lowROX 
(Jena Bioscience, Jena, Germany).
FRIP – Food Research Institute Prague, Czech Republic; UCT – University of Chemistry and Technology, Prague, Czech Republic; 
MATIS – Matís Ltd., Reykjavík, Iceland; FRI-NAFC – Food Research Institute, National Agricultural and Food Centre, Bratislava, 
Slovakia; NIPH – National Institute of Public Health, Centre for Health, Nutrition and Food, Brno, Czech Republic.
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in technical triplicates. Each calibration curve was 
constructed from five concentration points pre-
pared as serial dilutions of the target DNA with 
concentrations 50, 25, 6.25, 1.56 and 0.78 ng·µl-1. 
Two plates were used in each laboratory, each 
plate with its own calibration curve.

Inhibition control

Preparation of spiked sample material
DNA of black seabream (S. cantharus) in 

a  total amount of 5 ng was added to DNA sam-
ples isolated from nineteen fish species (exclud-
ing S. cantharus). As a result, DNA solutions with 
10 % DNA of S. cantharus and 90 % of DNA from 
other fish species were obtained. In this way, the 
mixed samples of the aforementioned parameters 
of total DNA concentration 25 ng·µl-1 were pre-
pared. These samples were used as parallels to 
samples of DNA isolates prepared from fish spe-
cies from the negative panel.

Internal positive control
TaqMan exogenous internal positive control 

(IPC) reagents (Applied Biosystems), emitting in 
channel of the fluorescent dye VIC (554 nm), were 
used as an alternative to spiking. Reactions con-
tained 10 µl of 2× TaqMan Environmental Mas-
ter Mix 2.0, 2 µl 10× Exo IPC Mix, 0.4 µl Exo IPC 
DNA, 5.6 µl of target primers, probe, nuclease-
free water and 2 µl of DNA solution of samples. 
IPC results were considered positive when the 

threshold cycle (Ct) value was lower than 30, 
which was considered as the positivity threshold 
[48]. 

Results and discussion

Qualitative data
Data obtained from all participating labo-

ratories are summarized in Tab. 1. The values of 
unknown samples falling into the concentration 
range of points of the calibration curve (Fig. 1, 2) 
were assessed as positive S. cantharus results. Sta-
tistical analysis of this summary provides 100% 
sensitivity, 100% specificity, zero false negativity, 
zero false positivity and 100% accuracy. The extra 
experiment done with qPCR ProbesMaster with 
lowROX Master Mix (Fig. 1) provided the same 
outcome as obtained from TaqMan Environmen-
tal Master Mix in terms of sensitivity, specificity, 
false negativity, false positivity and accuracy.

The results of tests for the exclusion of matrix 
inhibition were based on two different approach-
es. In the first one, DNA isolated from fish species 
from the negative panel was spiked up to a level 
of 10 % with DNA from S. cantharus (Fig. 3). In 
all of these samples, the signal of amplification 
was detected as positive, thus excluding inhibition 
by matrix (Tab. 3). Another approach, based on 
IPC emitting at the wavelength of VIC, provided 
a concordant result, i.e. no inhibition by matrix in 
negative samples was present, as the amplification 

Fig. 1. Comparison of S. cantharus samples vs samples of various other fish species 
used as a panel of negative species.

A – Reaction accomplished in TaqMan Environmental Master Mix 2.0 (Life Technologies, Carlsbad, California, USA), B – Reaction 
accomplished in qPCR ProbesMaster with lowROX (Jena Bioscience, Jena, Germany).

∆Rn – baseline-corrected normalized reporter in relative fluorescence units (RFU); P (bunch of black curves) – S. cantharus 
samples; N  (bunch of dark grey curves) – fish samples of the panel of negative species; c – distinct levels of concentration 
points of calibration, each bunch corresponding to one concentration level (c1 = 50 ng·µl-1, c2 = 6.25 ng·µl-1, c3 = 1.56 ng·µl-1, 
c4 = 0.78 ng·µl-1).
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Fig. 2. Overview of calibration curves.

FRIP – Food Research Institute Prague, Czech Republic; UCT – University of Chemistry and Technology, Prague, Czech Republic; 
MATIS – Matís Ltd., Reykjavík, Iceland; FRI-NAFC – Food Research Institute, National Agricultural and Food Centre, Bratislava, 
Slovakia; NIPH – National Institute of Public Health, Centre for Health, Nutrition and Food, Brno, Czech Republic.
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Fig. 3. Amplification plot of S. cantharus-specific 
real-time PCR obtained from spiked samples.

∆Rn – baseline-corrected normalized reporter in relative fluo-
rescence units (RFU); P (bunch of black curves) – S. cantha-
rus-specific signal from spiked samples; c – distinct levels of 
concentration points of calibration, each bunch correspond-
ing to one concentration level (c1 = 50 ng·µl-1, c2 = 25 ng·µl-1, 
c3 = 6.25 ng·µl-1, c4 = 1.56 ng·µl-1, c5 = 0.78 ng·µl-1); 

Fig. 4. Amplification plot of S. cantharus-specific
 real-time PCR together with internal positive control. 

∆Rn – baseline-corrected normalized reporter in relative 
fluorescence units (RFU); P (bunch of grey curves) – S. can-
tharus samples; N (bunch of grey curves) – fish samples of 
the panel of negative species; IPC (bunch of black curves) – 
internal positive control signal; c – distinct levels of concen-
tration points of calibration, each bunch corresponding to 
one concentration level (c1 = 50 ng·µl-1, c2 = 6.25 ng·µl-1, 
c3 = 1.56 ng·µl-1, c4 = 0.78 ng·µl-1); 
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Tab. 3. Overview of inhibition controls in spiked samples and internal positive control.

Sample 
code

Fish species
Spike

Agreement 
[%]

IPC Agreement 
between 

spike and 
IPC [%]FRIP UCT MATIS

FRI-
NAFC

NIPH FRIP

128 Salmon (Salmo salar) + + + + + 100 + 100

129 European carp (Cyprinus carpio) + + + + + 100 + 100

130 Atlantic bluefin tuna (Thunnus thymus) + + + + + 100 + 100

131 Brook trout (Salvelinus fontinalis) + + + + + 100 + 100

132 Mahi-mahi (Coryphaena hippurus) + + + + + 100 + 100

133 European seabass (Dicentrarchus labrax) + + + + + 100 + 100

134 Tilapia (Oreochromis niloticus) + + + + + 100 + 100

135 Atlantic herring (Clupea harengus) + + + + + 100 + 100

136 European hake (Merluccius gayi) + + + + + 100 + 100

137 Northern pike (Esox lucius) + + + + + 100 + 100

138 Pangasius (Pangasius hypothalamus) + + + + + 100 + 100

139 Carassius (Carassius carassius) + + + + + 100 + 100

140 Tench (Tinca tinca) + + + + + 100 + 100

141 Garfish (Belone belone) + + + + + 100 + 100

142 European eel (Anguilla anguilla) + + + + + 100 + 100

143 Silver carp (Hypophtalmichthys molitrix) + + + + + 100 + 100

144 Common sole (Solea solea) + + + + + 100 + 100

145 Red scorpionfish (Scorpena scrofa) + + + + + 100 + 100

146 Angler (Lophius piscatorius) + + + + + 100 + 100

FRIP – Food Research Institute Prague, Czech Republic; UCT – University of Chemistry and Technology, Prague, Czech Republic; 
MATIS – Matís Ltd., Reykjavík, Iceland; FRI-NAFC – Food Research Institute, National Agricultural and Food Centre, Bratislava, 
Slovakia; NIPH – National Institute of Public Health, Centre for Health, Nutrition and Food, Brno, Czech Republic.
IPC – exogenous internal positive control.
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of IPC took place in these samples (Fig. 4). There-
fore, there was 100% agreement between these 
two approaches (Tab. 3).

The variance of R-squared (R2), efficiency 
and slope fell into the range recommended for 
real-time PCR detection of genetically modified 
organisms (GMO). Among calibration curves ob-
tained from participating laboratories, the value 
of R2 fell into the interval 0.983–0.999, efficiency 
fell into the interval from 90 % to 110 %, and the 
slope fell into the interval from –3.1 to –3.6. These 
values were within the range recommended for 
PCR-based detection of GMO [49, 50].

Quantitative data
For quantitative assessment of positive sam-

ples, absolute quantification was used.
For each exemplar of S. cantharus, the average 

DNA concentration among the participating labo-
ratories was calculated, as well as the variation and 
standard deviation (Tab. 4). The average value of 
S. cantharus DNA concentration in true S. can-
tharus samples, among all participating laborato-
ries, was 22.8 ng·µl-1 (range 19.0–28.7 ng·µl-1). This 
might have represented the interspecies variability 
of the chosen trait, where the lowest and highest 
obtained values would be the margins of the range. 
In this way, the highest obtained value roughly 
represented 150 % of the lowest value. 

Compared to the end point setup [46], the 
TaqMan real-time PCR provides better specificity, 
as another selection instance, the dually labeled 
probe, in addition to the primers, also pairs with 
the template sequence. This could successfully be 
used with some other fish species in which there 
is a slight unspecific pairing under the end-point 
setup [46].

Within the context of testing for the potential 
influence of matrix by IPC, a multiplexed setup of 
real-time PCR was performed. This was found to 
be quite promising in terms of the quality of the 
obtained results. The multiplexed setup can also 
be envisaged as a useful improvement at the de-
tection of further fish species. The alternative 
approach, in which an additional dose of S. can-
tharus DNA was added to DNA of fish species 
from the negative panel, was shown to be equally 
capable of proving the inertness of the matrix. The 
level of 10 % was chosen based on the assumption 
that it should not interfere with DNA of the nega-
tive species itself but, at the same time, would be 
high enough to enable PCR which, in the case of 
inhibition by matrix, would not run. As the results 
of both approaches came to the same conclusion 
(no inhibition by matrix in any of the samples), 
it suggests that inhibition by matrix is not a ma-
jor concern under common conditions in PCR-
based species determination in fish. By comparing 
these two approaches, the one based on spiking 
by S.  cantharus DNA is simpler and cheaper, 
though dependent on availability of the biological 
material of the tested species (S. cantharus meat 
in this case). The approach based on commercial 
ICP is much more expensive but is also better de-
fined and standardized, which is more suitable for 
broad-range comparisons among a number of la
boratories. 

At the level of previous testing in end-
point format, the concern of possible intraspe-
cies variability was addressed by testing a set of 
exemplars of S. cantharus to exclude possible 
intraspecies variability, which might have resulted 
in some exemplars giving false negative outcomes 
of the test. This concern was sufficiently refuted 

Tab. 4. Summary of quantitative results.

Sample
Absolute DNA concentration [ng·µl-1]

Average
Standard 
deviation

Coefficient  
of variationFRIP UCT MATIS FRI-NAFC NIPH

103 21.83 22.83 24.63 15.13 23.25 21.535 3.326 0.154

105 18.37 19.15 23.04 15.26 19.30 19.023 2.483 0.130

106 20.09 18.56 20.68 14.71 21.52 19.111 2.404 0.126

111 22.72 22.42 23.55 19.83 25.97 22.898 1.977 0.086

113 28.38 29.15 27.44 22.03 28.46 27.091 2.588 0.096

120 19.88 22.27 22.20 18.16 20.50 20.601 1.537 0.075

122 19.82 21.39 18.99 13.47 19.39 23.673 2.697 0.114

126 24.74 29.69 31.76 25.01 32.47 28.734 3.282 0.114

FRIP – Food Research Institute Prague, Czech Republic; UCT – University of Chemistry and Technology, Prague, Czech Republic; 
MATIS – Matís Ltd., Reykjavík, Iceland; FRI-NAFC – Food Research Institute, National Agricultural and Food Centre, Bratislava, 
Slovakia; NIPH – National Institute of Public Health, Centre for Health, Nutrition and Food, Brno, Czech Republic.
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at that level. However, in the present real-time 
PCR based study with a dual-labelled TaqMan 
probe, eight distinct exemplars of S. cantharus 
were used and no intraspecies variability causing 
false negative results was observed. Therefore, 
the knowledge from the previous study, that intra
species variability does not hamper PCR-based de-
tection in the case S. cantharus, was confirmed in 
the more sophisticated format of the assay. 

The data and results obtained in this study 
positively evaluated a method for routine precise 
species determination of black seabream (S. can-
tharus) among other fish species based on small 
pieces of meat devoid of morphological traits. 
The presented method was found reproducible 
and robust, including the use of various real-time 
instruments as well as various buffers. In parallel, 
two different methods of control of inhibition by 
matrix were successfully tested, when the widely 
used approach based on spiking negative samples 
with DNA from target species was supplemented 
with an alternative approach using IPC. Both 
approaches proved to be equally useful.
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