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It is important to estimate the future accurately 
for anyone who must make decisions about the 
future because accuracy of the decision depends 
on the success of the prediction. Besides many 
forecasting techniques that have been tradition-
ally used, artificial intelligence technologies have 
come to use in recent years. Artificial neural net-
works (ANN) models are derived from artificial 
intelligence and provide successful applications 
for forecasting in different fields such as  business, 
industry and science [1–6]. ANN is a system, which 
consists of interconnected artificial neurons. It was 
developed for mathematical modelling of func-
tioning of biological neurons. The learning process 
is completed with the support of these artificial 
neurons similar to human brain. Learning process 
occurs between input and output variables without 
requiring any prior knowledge. In this way, 

neurons can provide linear or non-linear model-
ling. Therefore, as a forecasting tool, ANN is more 
general and flexible method than others [7].

Free radicals are highly unstable and reactive 
species, which contain unpaired electrons in an 
atomic orbital. Because of the reactivity of free 
radicals, they can easily interact with biologically 
relevant molecules such as DNA, proteins, carbo-
hydrates or lipids. Free radicals attack these im-
portant substances, which leads to cell damage. 
An antioxidant compound can be defined as 
a substance that reduces or inhibits the adverse ef-
fects of free radicals to cellular components [8, 9]. 
Therefore, there has been increasing interest to 
determine the antioxidant potential of natural 
products. Antioxidants can be produced syntheti-
cally, such as butylated hydroxyanisole (BHA), 
butylated hydroxytoluene (BHT) tert-butylhyd-
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there is no study on prediction of FRAP values 
based on the phenolic content. The purpose of the 
study was to obtain a model for estimation of anti-
oxidant activity of foods based on total phenolic 
content by using ANN. Phenolic content of differ-
ent food varieties (red pepper and grape seeds) 
was used as two input variables and FRAP values 
were estimated as output in this research. 

Materials and methods

Plant materials and preparation of extracts
Grape seeds were obtained from Pistachio 

Research Station in Gaziantep, Turkey. Red 
peppers were obtained from local markets in 
Sakarya, Turkey. Samples were taken into a tube 
and methanol : water mixture (70 : 30, v/v) was 
added as a solvent. The tubes were treated at 
ambient temperature in an ultrasonic water bath 
(Bandelin Sonorex, Berlin, Germany) for 15 min. 
Then, they were centrifuged (Hettich Univer-
sal 320R, Newport Pagnell, United Kingdom) at 
13 130 ×g at 4 °C for 10 min, and supernatant was 
separated for analysis [27].

Determination of total phenolic content
The amount of total phenols was determined 

spectrophotometrically according to Gao et al. 
[28]. A volume of 0.1 ml of extract was mixed with 
2 ml of distilled water and 0.2 ml of Folin-Ciocal-
teu reagent. One milliliter of sodium carbonate 
solution (20%) was added after 3 min and incu-
bated at ambient temperature for 1 h. Absorbance 
of samples was determined at 765 nm (UV-1240; 
Shimadzu, Kyoto, Japan). The results were ex-
pressed as grams of gallic acid equivalents per ki-
logram of sample. Precision was expressed as rela-
tive standard deviation (RSD) found to be lower 
than 2 % with r2 = 0.9961.

Ferric ion reducing antioxidant power assay
FRAP assay was carried out by a modi-

fied method of Benzie and Strain [15]. The 
FRAP reactant was prepared by mixing (10 : 1 : 1) 
300 mmol·l-1 acetate buffer (pH 3.6), 10 mmol·l-1 
TPTZ and 20 mmol·l-1 FeCl3 solutions. Volumes 
of 0.1 ml of the extracts were taken to tubes, fol-
lowed by the addition of 1.8 ml of FRAP reactant 
and 1.2 ml of distilled water. Absorbance was 
measured at 593 nm after incubation at 37 °C for 
15 min. Aqueous solutions of FeSO4·7H2O were 
used to construct the calibration curve and the re-
sults were expressed as grams of FeSO4 per kilo-
gram of sample. Precision was expressed as RSD 
found to be less than 3 % with r2 = 0.9947.

roquinone (TBHQ) or propyl gallate (PG). How-
ever, due to the carcinogenic and toxic effects of 
these compounds, consumers have interest in 
natural antioxidants [10, 11]. Natural antioxidants 
include phenolic compounds (flavonoids, phe-
nolic acids and tannins), carotenoids, tocophe-
rols, ascorbic acids and their derivatives. It was 
reported that phenolic compounds have the most 
important antioxidant capacity among all antioxi-
dant substances. Therefore, they are considered 
as potential agents to prevent oxidative damage 
by mechanisms of singlet oxygen quenching, metal 
ion chelation and free-radical scavenging. Phenol-
ic compounds are mainly found in plant kingdom 
and they form a large group of phytochemicals 
[12, 13].

It is important to determine the antioxidant ca-
pacity of plants due to the potential protective fac-
tors of phenolic compounds and other antioxidants 
against cancer and heart diseases [14]. Different 
chemical methods can be used to evaluate the 
antioxidant activity of products. One of the wide-
ly used method is ferric ion reducing antioxidant 
power (FRAP) assay, whose principle is the reac-
tion of tripyridyl triazine-ferric complex (Fe(III)-
TPTZ) with antioxidants. This assay was initially 
developed to determine the antioxidant capacity 
of plasma, but it has been used to measure anti-
oxidant capacity of biological samples and foods 
[15, 16]. In the literature, there are studies about 
the strong relationship with total phenolic con-
tents and FRAP assay. Seventy medicinal plant ex-
tracts were screened for antioxidant capacity and 
total phenolics, and a significant linear correlation 
(R = 0.9825) was found between total phenolic 
content and FRAP assay [17]. Other researchers 
also reported a high correlation of total phenolic 
compounds and FRAP assay [18, 19].

Artificial neural networks (ANN) have 
been used in food industry for modelling many 
processes. Guiné et al. [3] predicted the antioxi-
dant activity and phenolic compounds of bananas 
from banana variety, dryness state, type and order 
of extract by using a simple neural network. Pre-
diction of antioxidant activities and classification 
of wines using ANN were attempted with a limited 
set of analytical measurements, which were total 
phenolics, flavonoids, anthocyanins and tannins. 
The study reported that ANN was a reliable 
approach tool to predict antioxidant activity and 
wine characteristics [20]. Similar study was done to 
predict antioxidant activity and classify some teas 
using ANN. It was also successful in classification 
and prediction of antioxidant potential of tea sam-
ples [21]. In several studies, ANN was used in food 
engineering [22–26]. However, as far as we know, 
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Artificial neural network analysis
Artificial neural network is the architecture 

combining numbers of artificial neurons for the 
processing of data similar to basic biological 
neural networks. This architecture consists of in-
terconnected components with one-way channels. 
There are three type of networks, which are feed 
forward, cascade connected and feedback [29]. 

Cascade connected network, which has at least 
one feedback network from previous layer, is 
a single or multilayer network type. 

Feedback is a network in which at least one cell 
is also feed from next layer.

Feed-forward neural network was used in this 
study and it is the type of network in which the 
cells on the layer are fed only from the cells on the 
previous layer. This structure is composed of three 
layers, namely, input layer, intermediate layer 
and output layer. Data come from input layer and 
move towards intermediate and output layer uni-
directionally. The internal structure is extremely 
complex and composed of several layers [30].

The working principle of network is as follows: 
The information from outer world is given to input 
layer firstly. There is one neuron for each input 
and processing of information is not generally per-
formed in this layer. The received data are trans-
mitted to the intermediate layer and this layer 
processes the information. The intermediate layer 
consists of one or more layers and information is 
mainly processed in this layer [30]. Most of the 
time, it can be also called as hidden layer. This 
layer has one neuron for each case in the training 
set. These neurons contain learning coefficients. 
The values reached after mathematical calcula-
tions are transferred to neurons in the output lay-
er. Weighed values collected in the intermediate 
layer are compared in the output layer. The largest 
estimation value is generated as the output value 
for the target category. This type of ANN operates 
according to supervised learning strategy. Back 
propagation learning algorithm is widely used in 
training [31]. Levenberg-Marquardt backpropaga-
tion (LM) algorithm was used in this study.

The structure of ANN used in simulation is 
shown in Fig. 1. The number of input data was 
tested by number of data among 1–100 neurons in-
dividually and all results were recorded. Moreover, 
performance evaluation criteria of the  network 
were calculated in order to evaluate the network 
performance. 

Levenberg-Marquardt backpropagation training 
function

The most commonly used structure in ANN is 
based on Newton and back-propagation algorithm. 
Input data pass through hidden layer, are trans-
mitted to output layer and let off as output. Error 
rate is determined by comparing the actual values 
and output values. Derivative of the error rate is 
transmitted to the hidden layer and an  attempt 
to reduce the error rate is made by changing the 
weight values of neurons [32]. Error rate is cal-
culated by the least square method. By this way, 
change of weight values is done to increase the 
performance values. However, this advantage is 
slowed down ANN in terms of speed this makes 
no sense, please correct. 

The aim of using the algorithm is to achieve 
Hessian matrix by second order derivative of per-
formance function with regard to weight values.

𝐻𝐻(𝑛𝑛) = 𝐽𝐽𝑇𝑇(𝑛𝑛). 𝐽𝐽(𝑛𝑛) + 𝜇𝜇𝑚𝑚. 𝐼𝐼 	 (1)

In this equation, H, µm, I express Hessian ma-
trix, Marquardt parameter and identity matrix, 
respectively. J, Jokobian matrix, indicates the first 
order derivative of network error based on weight. 
n and T represent iteration number and transpose 
matrix, respectively.

𝐽𝐽(𝑛𝑛) =
𝑑𝑑𝑑𝑑(𝑛𝑛)

𝑑𝑑𝑑𝑑(𝑛𝑛 − 1) 	 (2)

where e states vector of network error, w indicates 
weight value.

Gradient of network (g) is calculated as

𝑔𝑔(𝑛𝑛) = 𝐽𝐽𝑇𝑇(𝑛𝑛)𝑒𝑒(𝑛𝑛) 	 (3)

and obtained by Eq. 4.

𝑤𝑤(𝑛𝑛 + 1) = 𝑤𝑤(𝑛𝑛) − [𝐻𝐻(𝑛𝑛)]−1𝑔𝑔(𝑛𝑛) 	 (4)

Value of µm decreases at each step of getting error 
value. The goal is calculation of weight value 
which makes the performance function smallest 
[33].

Data processing
For ANN modeling, numbers of data for red 

pepper and grape seeds were 58 and 92, respec-
tively. Variety of foods (red pepper and grape 
seeds) and phenolic contents were encoded in the 

Input
Hidden Output

Outputw w

b b2

80 1

1

Fig. 1. Artificial neural network topology.

w – weight vector (artificial neural network learning coef-
ficients), b – bias input (threshold value of artificial neural 
network neurons to be active).
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input layer. The output layer was made of anti
oxidant activity of samples (FRAP value). All 
neurons between 1–100 were tried one by one and 
empirical evidence showed that the best result was 
obtained with 80 neurons. Therefore, all results 
given in this study were obtained using 80 neurons 
in the hidden layer. The number of total experi-
mental data was 150 for ANN analysis. The data 
were randomly allocated in the MATLAB script to 
train (70 %) and test (30 %) for all network topo
logies.

The separation process was done according to 
the systematic sampling theorem. The first group 
was obtained by choosing 30 % of the total data 
according to this theorem. The remaining 70 % 
of data made up the second group. The code has 
been written in the MATLAB programming lan-
guage for decomposition of data groups. The 
data were separated according to the automatic 
and systematic sampling theorem. The training 
set was used to calculate function parameters of 
the network and the test set was used to estimate 
FRAP values of samples.

Performance evaluation criteria
Mean square error (MSE), error rate (in per-

cent) and Sperman correlation coefficient were 
used to measure the performance of the network. 
MSE was calculated by the Eq. 5 in a data set with 
estimated value (YANN), real value (YReal) and size 
(n) [34]. There was no specific threshold value to 
interpret the network. However, this value close to 
zero meant that the system performance was high.

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛��𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑌𝑌𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 �2

𝑛𝑛

𝑖𝑖=1

 	 (5)

Change between estimated value and real value 
(in percent) was examined. It could be said that 
system worked with error rate (Herr) expressed in 
percent (Eq. 6).

𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒 =
1
𝑛𝑛�

�𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 − 𝑌𝑌𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 �
𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 × 100

𝑛𝑛

𝑖𝑖=1

 	 (6)

Correlation coefficient gives information about 
degree and direction of relationship between 
variables. Different correlation coefficients have 
been developed according to type of variables. 
While they are calculated between continuously 
variable data types, distribution of the data sets 
is important in determination of correlation 
coefficient. If the group shows normal distribu-
tion, Pearson correlation coefficient is calculated. 
However, Sperman correlation coefficient is used 
if the group does not show a normal distribution. 

In this study, Sperman correlation coefficient was 
used and calculated using the following equation 
[34]:

𝑟𝑟𝑠𝑠 = 1 − 6�
𝑑𝑑𝑖𝑖

𝑛𝑛(𝑛𝑛2 − 1)

𝑛𝑛

𝑖𝑖=1

 	 (7)

where di is the difference between sequence num-
bers of i. observation, i is calculated observation 
number and n is observation number. 

Cases of n < 30 and n > 30 were taken into 
consideration for statistical decision. For n < 30, 
it was fulfilled by utilizing table of Sperman rank 
correlation coefficient according to error level 
(a) and degree of freedom (n – 2) [34]. t statistic 
is calculated in the case of n > 30. It is compared 
to t table statistic according to a and (n – 2). It 
is required that the obtained p statistical value is 
smaller than 0.05.

Results and discussion

The goal of this study was to estimate the anti-
oxidant activity of foods based on phenolic con-
tents. Red pepper and grape seeds were used as 
samples. Total phenolic content and antioxidant 
activity of red pepper and grape seeds were differ-
ent. Therefore, different type of foods were used 
to widen the applicability of ANN model. To build 
the ANN-based model, total set of samples was di-
vided into two subsets to train ANN and test the 
estimation capability. In order to train the subset, 
105 of samples were randomly selected, while the 
testing subset had 45 samples. The ANN topology 
and parameters were selected as 2–80–1 neurons 
in input-hidden-output layers (Fig. 1). 

The experimental and estimated results of 
training and testing sets are shown in Tab. 1. The 
errors (Er) between experimental (FRAPexp) and 
estimated (FRAPest) values of training and testing 
sets were calculated and average error was found 
to be 8.5 % and 10.1 %, respectively. This meant 
that estimations were accurate for the training 
and testing sets. Buciński et al. [23] demostrated 
the success of prediction of antioxidant capacity 
of cruciferous sprouts based on the contents of 
bioactive compounds. They found that mean of 
difference between experimental and calculated 
values of Trolox equivalent antioxidant capac-
ity (TEACexp and TEACcalc) for testing set was 
6.06 mmoles of Trolox per kilogram of dry matter. 
However, the difference between TEACexp and 
TEACcalc was 12.7 % (recalculated), which was 
higher than in this study. Hosu et al. [20] predict-
ed the antioxidant activity of Romanian red wines 
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Tab. 1. Training and testing set.

Number  
of sample

Training set Testing set

TPC [g·kg-1] FRAPexp [g·kg-1] FRAPest [g·kg-1] TPC [g·kg-1] FRAPexp [g·kg-1] FRAPest [g·kg-1]

1 0.62 3.02 3.31 0.64 2.57 3.38
2 0.82 3.05 4.00 1.12 3.07 4.97
3 0.75 3.07 3.74 0.78 3.21 3.87
4 0.60 3.10 3.25 0.95 3.42 4.42
5 0.71 3.31 3.61 0.68 3.55 3.51
6 0.65 3.38 3.41 0.80 3.69 3.94
7 0.76 3.44 3.78 0.74 3.79 3.71
8 0.69 3.47 3.54 0.78 4.08 3.84
9 0.78 3.62 3.84 0.87 4.13 4.17

10 0.73 3.69 3.68 0.75 4.24 3.74
11 0.62 3.70 3.31 0.77 4.29 3.81
12 1.02 3.71 4.66 0.97 4.33 4.49
13 0.78 3.84 3.84 0.84 4.61 4.07
14 0.85 4.04 4.10 0.93 4.68 4.36
15 0.69 4.08 3.54 0.95 4.94 4.42
16 0.87 4.10 4.17 1.47 5.35 6.07
17 1.14 4.15 5.03 1.54 5.65 6.30
18 0.91 4.15 4.30 1.27 5.82 5.43
19 0.72 4.25 3.64 1.34 6.16 5.68
20 1.06 4.26 4.77 1.47 6.91 6.08
21 0.74 4.29 3.71 133.62 474.89 578.59
22 0.92 4.30 4.33 93.45 482.27 544.12
23 1.07 4.44 4.80 90.95 514.66 548.43
24 0.86 4.44 4.13 109.45 536.25 515.24
25 0.93 4.65 4.36 136.45 544.20 575.97
26 0.78 4.65 3.87 100.78 557.27 509.72
27 0.97 4.82 4.49 124.78 565.23 608.12
28 1.02 4.89 4.65 112.78 570.34 537.74
29 0.93 5.20 4.36 92.45 578.30 546.91
30 1.02 5.33 4.65 184.12 585.68 673.56
31 1.16 5.48 5.08 127.28 590.23 604.68
32 0.99 5.50 4.54 201.12 603.86 649.24
33 1.30 5.68 5.55 119.62 606.14 590.95
34 1.52 5.80 6.23 113.95 619.77 547.13
35 1.16 5.88 5.09 202.12 644.20 658.03
36 1.11 6.04 4.93 131.12 658.41 588.92
37 1.53 6.44 6.24 188.12 682.84 651.60
38 1.52 6.86 6.22 181.62 691.93 684.34
39 83.12 460.68 465.01 142.12 709.55 620.61
40 137.28 461.25 578.19 212.12 720.91 780.87
41 113.78 477.16 545.76 241.28 726.59 763.20
42 162.12 482.27 595.76 208.95 761.82 741.77
43 104.78 493.64 501.94 220.12 774.32 838.68
44 131.12 512.95 588.92 214.62 777.73 805.96
45 138.45 520.91 583.95 207.12 796.48 717.35
46 131.28 522.61 588.14
47 87.28 539.09 532.36
48 128.45 541.36 600.81
49 112.78 549.89 537.74
50 124.45 555.57 608.00
51 194.12 558.98 627.75
52 154.45 560.11 667.35
53 156.28 566.36 646.59
54 143.78 569.77 642.66
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Number  
of sample

Training set Testing set

TPC [g·kg-1] FRAPexp [g·kg-1] FRAPest [g·kg-1] TPC [g·kg-1] FRAPexp [g·kg-1] FRAPest [g·kg-1]

55 135.62 572.05 575.25
56 137.12 573.75 577.62
57 92.95 580.00 545.66
58 13.95 584.55 589.71
59 134.62 589.09 576.13
60 156.12 589.09 648.55
61 135.12 598.18 575.47
62 166.78 603.30 609.13
63 120.62 605.00 596.65
64 184.78 605.00 670.10
65 159.12 610.68 615.20
66 208.12 614.09 730.71
67 193.28 623.18 629.41
68 151.12 634.55 691.68
69 143.45 650.45 638.21
70 126.12 651.59 607.20
71 137.95 665.23 581.09
72 190.28 673.75 640.42
73 239.78 684.55 766.51
74 271.28 686.82 749.09
75 193.95 695.91 628.02
76 278.62 707.84 719.67
77 142.62 714.66 627.12
78 261.12 719.77 790.43
79 161.12 722.61 599.95
80 149.28 723.75 692.62
81 275.45 727.16 729.20
82 176.78 756.70 687.66
83 208.95 763.52 741.77
84 171.12 772.05 650.51
85 200.28 774.32 642.99
86 277.28 777.73 722.87
87 190.28 778.86 640.42
88 217.28 792.50 825.68
89 220.28 796.48 839.20
90 242.12 800.45 762.36
91 246.45 803.86 767.33
92 218.62 808.41 832.78
93 236.12 810.11 783.95
94 217.12 815.23 824.66
95 180.78 817.50 686.85
96 221.62 828.30 842.43
97 233.95 832.84 798.53
98 208.28 835.11 732.93
99 215.28 839.09 811.59

100 226.28 839.66 840.64
101 212.28 841.93 782.73
102 262.95 844.77 786.33
103 296.28 852.16 852.83
104 223.62 872.61 844.16
105 263.28 906.14 785.38

TPC – total phenolic content (expressed as grams of gallic acid equivalents), FRAPexp – experimental values of ferric ion reduc-
ing antioxidant power, FRAPest – estimated values of ferric ion reducing antioxidant power (both expressed as grams of FeSO4 
equivalents).

Tab. 1. continued
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by using data on total phenolics, flavonoids, antho-
cyanins and tannins content. They found that rela-
tive errors between the predicted and real values 
of antioxidant activities of the wines were less than 
3 %. Cimpoiu et al. [21] also predicted the anti-
oxidant activity of tea samples based on total fla-
vonoids, catechins and methyl-xanthines content. 
They used 20 samples for training and 10 samples 
for testing. It was found that the relative error was 
less than 0.5 %, which demonstrated success of 
training and good prediction capability of ANN 
models. However, when the number of data is low, 
ANN can memorize the results. In this work, it 
was out of question due to the excess of data. This 
was also determined with different performance 
criteria.

The correlations between the experimen-
tal and estimated FRAP values of training set 
and testing set are shown in Fig. 2. There were 
good correlations between the estimated and 
experimental values for both training and test-
ing subsets, whose coefficients were R = 0.9883 

and R = 0.9925, respectively. In the study of 
Guiné et al. [3], phenolic contents and antioxidant 
activity of bananas were predicted based on 4 input 
variables (banana variety, dryness state, type and 
order of extract) and correlation coefficients 
between antioxidant activity and phenolic contents 
ranged from 0.7638 to 0.8258. The authors also in-
dicated that it was possible to predict antioxidant 
activity of bananas based on the phenolic content 
with R = 0.90 for whole data sets. However, they 
reported that predicting of phenolic contents from 
antioxidant activity was a harder problem because 
the neural network with the same characteristics 
could only predict it with R = 0.85. Antioxidant 
activities of Romanian red wines were predicted 
by using ANN and a good correlation between 
the calculated and experimental values was ob-
tained (R = 0.992 and R = 0.963) [20]. Although 
antioxidant activity and content of total phenolic 
compounds of the grape seed and red pepper dif-
fered to a great extent, satisfactory results were 
achieved, which makes this study succesful. All 
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Fig. 2. Correlation between the estimated and experimental values of ferric ion reducing antioxidant power.

A – training set of grape seed, B – testing set of grape seed, C – training set of red pepper, D – testing set of red pepper. 
FRAPexp – experimental values of ferric ion reducing antioxidant power, FRAPest – estimated values of ferric ion reducing antioxi-
dant power (both expressed as grams of FeSO4 equivalents per kilogram of sample).
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Tab. 2. Performance evaluation of training and testing data with respect to the number of neurons.

Number
of neurons 

Training data Testing data

MSE AE [%] R MSE AE [%] R

80 2660.6664 8.5 0.9518 1540.5393 10.1 0.9428

79 3010.1129 –1.6 0.9466 2045.7016 –3.4 0.9466

61 2515.1179 –0.3 0.9516 1955.5467 –4.2 0.9417

60 3263.8917 0.2 0.9478 3462.4947 –0.1 0.9403

32 3114.9557 –0.5 0.9461 1974.7900 –2.2 0.9396

43 3314.0829 –1.3 0.9410 2207.3153 –2.4 0.9391

25 2816.9782 –0.7 0.9498 1724.2495 –3.4 0.9387

10 2773.2580 –0.9 0.9486 1802.5389 –2.7 0.9386

15 3016.9883 45.3 0.9440 2273.5192 53.9 0.9384

50 2628.3754 –1.3 0.9522 2004.4673 –3.3 0.9384

13 3371.9920 –2.2 0.9435 3363.0077 –3.0 0.9382

16 2699.4588 –0.8 0.9455 2061.8949 –4.6 0.9382

42 2981.8641 0.7 0.9463 2388.1264 –0.7 0.9382

1 3586.1186 –5.4 0.9359 2466.4171 –5.9 0.9379

2 4068.8182 –254.1 0.9359 3221.8935 –316.7 0.9379

4 3318.7386 0.1 0.9359 2296.5723 –3.3 0.9379

7 3122.2174 –16.9 0.9433 2394.5744 –21.3 0.9379

14 3292.9986 –2.7 0.9400 2761.8830 –4.6 0.9379

20 3022.0772 –1.1 0.9426 2274.8811 –4.3 0.9379

21 6468.1666 0.9 0.9228 4097.2009 0.5 0.9379

71 3052.2257 –1.2 0.9433 1514.9222 –4.4 0.9376

70 2502.3210 –2.4 0.9524 2171.4548 –5.8 0.9373

9 3305.1016 2.4 0.9404 3140.7928 2.3 0.9371

56 2491.1007 0.5 0.9498 2436.4954 –3.6 0.9370

99 2983.1446 2.0 0.9482 3622.7124 –2.1 0.9370

98 2489.9948 –1.7 0.9534 3629.5881 –4.5 0.9362

83 9512.1359 –1.2 0.9463 1971.8539 –4.5 0.9353

88 2857.5629 2.2 0.9551 3131.4154 0.9 0.9351

82 2499.9597 –1.8 0.9498 2004.8857 –4.5 0.9346

86 2812.2356 17.5 0.9459 3466.1084 18.6 0.9345

29 3446.0217 –0.3 0.9289 2424.0193 –4.5 0.9337

90 2405.0568 –1.8 0.9513 2844.0623 –7.4 0.9336

67 2475.4204 –1.7 0.9519 2365.9476 –3.8 0.9334

52 3211.2984 –39.5 0.9428 2640.8802 –52.7 0.9320

64 2498.8151 –0.4 0.9542 2115.0325 –3.5 0.9316

74 2595.2082 –0.4 0.9506 2673.5251 –2.1 0.9316

89 2437.4629 –1.7 0.9515 2215.3258 –5.7 0.9312

47 2820.2671 –3.2 0.9522 3506.7080 –5.2 0.9309

95 3070.4617 59.9 0.9431 2333.4139 71.9 0.9307

63 2381.7245 –0.1 0.9517 2263.2076 –3.8 0.9305

84 2767.7731 –3.8 0.9485 2677.3215 –7.3 0.9301

48 6116.8504 –4.1 0.9405 2866.2305 –5.8 0.9296

54 2624.3261 –3.1 0.9509 2720.8881 –5.0 0.9296

77 2274.6660 –1.3 0.9545 2794.2098 –5.2 0.9296

75 2804.8744 0.2 0.9521 2276.8384 –3.6 0.9290

85 2866.7975 –1.5 0.9510 2558.3631 –3.9 0.9287

55 3681.9572 –3.6 0.9392 2759.5287 –6.2 0.9280

81 2990.0035 –2.8 0.9481 2206.8720 –4.1 0.9279

92 2971.8037 –4.8 0.9541 2386.7400 –6.7 0.9278

93 5906.5434 –44.8 0.9099 3920.3047 –60.4 0.9275

51 2540.7751 –1.2 0.9525 2361.4719 –4.8 0.9270



Cerit, I. et al.	 J. Food Nutr. Res., Vol. 56, 2017, pp. 138–148

146

Number
of neurons 

Training data Testing data

MSE AE [%] R MSE AE [%] R

87 5553.6294 10.1 0.9321 7976.3525 10.3 0.9267

45 3092.5567 –1.9 0.9499 2710.9898 –2.3 0.9266

38 3088.0817 –11.0 0.9463 2205.5340 –17.8 0.9264

59 2896.2287 –0.4 0.9520 2642.3133 –3.2 0.9264

68 2383.2301 –5.4 0.9548 2795.3149 –10.5 0.9264

33 2912.1726 –2.5 0.9481 2303.3217 –6.2 0.9263

26 3200.5203 2.5 0.9450 2494.4786 2.4 0.9262

96 2598.9847 –0.8 0.9498 2418.1348 –4.9 0.9255

65 2602.2249 –2.1 0.9526 2722.0044 –5.2 0.9241

76 3756.4309 –1.4 0.9450 3060.9371 –1.7 0.9239

100 2196.2486 –2.2 0.9557 2340.5081 –4.5 0.9234

72 3040.4014 –1.9 0.9453 2871.8858 –5.0 0.9233

73 2750.6222 6.0 0.9459 2585.7146 4.9 0.9229

62 2301.1468 1.8 0.9569 2249.2635 –1.8 0.9228

31 4754.0712 64.3 0.9173 2915.1304 79.9 0.9224

44 4353.2726 –1.1 0.9284 3164.0201 –5.5 0.9218

35 3228.3771 3.2 0.9441 3564.3012 0.8 0.9201

91 2944.1054 –1.7 0.9487 2969.5571 –3.6 0.9192

27 2412.7738 –2.5 0.9490 2663.3886 –4.9 0.9188

69 4873.4710 –2.9 0.9392 3176.5238 –3.1 0.9185

46 4860.4839 2.4 0.9370 2098.3794 0.2 0.9180

57 3041.7509 –0.6 0.9449 2441.9311 –2.9 0.9176

58 2855.8841 0.6 0.9458 2828.3598 –3.2 0.9174

49 3483.5351 –4.0 0.9474 4920.2963 –8.1 0.9159

94 4512.5642 –53.4 0.9115 4739.3365 –67.8 0.9116

78 2475.7822 –1.2 0.9507 2797.1566 –4.5 0.9095

97 18592.7570 10.0 0.8966 26446.6148 10.0 0.9063

11 4771.1168 0.2 0.9211 3715.2413 –1.7 0.9062

28 4716.4043 –10.9 0.8991 2414.3349 –17.1 0.8976

66 13116.6814 –140.4 0.8849 10432.5024 –177.5 0.8722

23 17977.9129 –10.8 0.9093 30435.4724 –10.6 0.8250

30 3245.0491 0.9 0.8622 2254.9571 0.7 0.8250

22 3369.7650 –20.2 0.8676 1973.6198 –21.8 0.8189

39 3027.5782 –3.8 0.8696 2190.9543 –3.5 0.8188

24 3063.4135 –1.1 0.8681 1997.6631 0.7 0.8187

17 3116.8913 –7.5 0.8668 2378.5237 –5.1 0.8185

8 3197.0286 2.4 0.8643 2615.8734 3.0 0.8184

12 3088.6686 –3.3 0.8679 2751.0468 –3.1 0.8184

5 3472.7975 –2.7 0.8586 1942.7901 –1.6 0.8181

37 2963.2695 –19.9 0.8680 1943.2274 –23.9 0.8181

3 4704.3815 –36.1 0.8570 2742.9799 –43.0 0.8171

36 2608.2289 3.4 0.8760 1831.4884 8.4 0.8134

53 5198.2186 –7.5 0.8371 2196.9863 –8.6 0.8134

6 3346.8615 –1.9 0.8580 2250.1573 –3.0 0.8131

19 3130.9044 –2.4 0.8646 2306.1917 –3.4 0.8085

18 3440.1278 –2.5 0.8620 2075.8534 –3.3 0.8075

34 3734.9495 –90.4 0.8501 3247.8880 –106.2 0.8054

40 3727.3702 –149.5 0.8626 3426.8164 –183.1 0.8011

41 2714.3076 –5.4 0.8694 2121.9126 –6.1 0.7905

Average 4718.5907 –8.0 0.9282 3286.9967 –11.5 0.9067

MSE – mean square error, AE – average error, R – correlation coefficient.

Tab. 2. continued
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this research indicated that ANN models could be 
used to estimate antioxidant activities of food sam-
ples with high correlation coefficients. 

Data on performance evaluation of training 
and testing data, with respect to neuron number, 
are presented in Tab. 2. The study was carried out 
in the range of 1–100 neurons. The best result was 
obtained with 80 neurons. R values were calculat-
ed for training (0.9518) and testing sets (0.9428) 
using this number of neurons. As shown in Tab. 2, 
the percent errors were mostly single-digit, but 
some extreme values gave very high error rate. 
Average errors of training and testing were found 
as –8.0 % and –11.5 %, respectively.

Conclusions

This study reports on an efficient use of arti-
ficial neural network to estimate the antioxidant 
activity of food samples based on their phenolic 
contents. The feed-forward ANN-based model 
was designed and trained using back propaga-
tion algorithm. As shown on the training and test-
ing subsets of data, antioxidant activity could be 
estimated with a high accuracy. All correlation 
coefficients in this study were found above 0.80, 
which is the value necessary for the developed 
system to be applicable in practice [35]. In addi-
tion, error rate was approximately 10 %, which is 
equivalent to 90 % of success. Therefore, it can 
be said that ANN is a reliable method to estimate 
FRAP values of foods and it may provide impor-
tant savings of experimental costs and workload.

Acknowledgements
This research was supported by the Commission 

of Scientific Research Projects of Sakarya University 
(Sakarya, Turkey), Project Number 2014-50-01-027. 

References

	 1.	Bozkurt, M. R. – Yurtay, N. – Yilmaz, Z. – 
Sertkaya,  C.: Comparison of different methods for 
determining diabetes. Turkish Journal of Electric 
Engineering and Computer Sciences, 22, 2014, 
pp. 1044–1055. DOI: 10.3906/elk-1209-82.

	 2.	Chen, T. – Wang, Y. C.: Estimating simulation work-
load in cloud manufacturing using a classifying arti-
ficial neural network ensemble approach. Robotics 
and Computer-Integrated Manufacturing, 38, 2016, 
pp. 42–51. DOI: 10.1016/j.rcim.2015.09.011.

	 3.	Guiné, R. P. F. – Barroca, M. J. – Gonçalves, F. J. – 
Alves, M. – Oliveira, S. – Mendes, M.: Artificial neural 
network modelling of the antioxidant activity and 
phenolic compounds of bananas submitted to differ-
ent drying treatments. Food Chemistry, 168, 2015, 

pp. 454–459. DOI: 10.1016/j.foodchem.2014.07.094.
	 4.	Jiang, G. – Keller, J. – Bond, P. L. – Yuan, Z.: 

Predicting concrete corrosion of sewers using arti-
ficial neural network. Water Research, 92, 2016, 
pp. 52–60. DOI: 10.1016/j.watres.2016.01.029.

	 5.	Meng, A. – Ge, J. – Yin, H. – Chen, S.: Wind speed 
forecasting based on wavelet packet decomposition 
and artificial neural networks trained by crisscross 
optimization algorithm. Energy Conversion and 
Management, 114, 2016, pp. 75–88. DOI: 10.1016/j.
enconman.2016.02.013.

	 6.	Uçar, M. K. – Bozkurt, M. R. – Bozkurt, F.: 
Determination of new bio signal and tests alterna-
tive to verbal pain scale for diagnosing fibromy-
algia syndrome. International Journal of Image, 
Graphics and Signal Processing, 3, 2016, pp. 1–8. 
DOI: 10.5815/ijigsp.2016.03.01.

	 7.	Zhang, G. – Patuwo, B. E. – Hu, M. Y.: Forecasting 
with artificial neural networks. International Journal 
of Forecasting, 14, 1998, pp. 35–62. DOI: 10.1016/
S0169-2070(97)00044-7.

	 8.	Lobo, V. – Patil, A. – Phatak, A. – Chandra, N.: Free 
radicals, antioxidants and functional foods: Impact 
on human health. Pharmacognosy Reviews, 4, 2010, 
pp. 118–126. DOI: 10.4103/0973-7847.70902.

	 9.	Young, S. I. – Woodside, J. V.: Antioxidants in health 
and disease. Journal of Clinical Pathology, 54, 2001, 
pp. 176–186. DOI: 10.1136/jcp.54.3.176.

	10.	Brewer, M. S.: Natural antioxidants: sources, com-
pounds, mechanisms of action, and potential appli-
cations. Comprehensive Reviews in Food Science 
and Food Safety, 10, 2011, pp. 221–247. DOI: 
10.1111/j.1541-4337.2011.00156.x.

	11.	Gülçin, I. Antioxidant activity of food constituents: 
An overview. Archives of Toxicology, 86, 2012, 
pp. 345–391. DOI: 10.1007/s00204-011-0774-2.

	12.	Fu, L. – Xu, B.-T. – Gan, R.-Y. – Zhang, Y. – 
Xu, X.-R. – Xia, E.-Q. – Li, H.-B.: Total phenolic 
contents and antioxidant capacities of herbal and 
tea infusions. International Journal of Molecular 
Sciences, 12, 2011, pp. 2112–2124. DOI: 10.3390/
ijms12042112.

	13.	Nićiforović, N. – Mihailović, V. – Mašković, P. – 
Solujić, S. – Stojković, A. – Muratspahić, D. P.: 2010. 
Antioxidant activity of selected plant species; poten-
tial new sources of natural antioxidants. Food and 
Chemical Toxicology,  48, 2010, pp. 3125–3130. DOI: 
10.1016/j.fct.2010.08.007.

	14.	Cartea, M. E. – Francisco, M. – Soengas, P. – 
Velasco, P.: Phenolic compounds in Brassica 
vegetables. Molecules, 16, 2011, pp. 251–280. DOI: 
10.3390/molecules16010251.

	15.	Benzie, I. F. – Strain, J. J.: The ferric reducing abil-
ity of plasma (FRAP) as a measure of ‘antioxidant 
power’: the FRAP assay, Analytical Biochemistry, 
239, 1996, pp. 70–76.  DOI: 10.1006/abio.1996.0292.

	16.	López-Alarcón, C. – Denicola, A.: Evaluating the 
antioxidant capacity of natural products: A review 
on chemical and cellular-based assays. Analytica 
Chimica Acta, 763, 2013, pp. 1–10. DOI: 10.1016/j.
aca.2012.11.051.

	17.	Katalinic, V. – Milos, M. – Kulisic, T. – Jukic, M.: 

http://dx.doi.org/10.3906/elk-1209-82
http://dx.doi.org/10.1016/j.rcim.2015.09.011
http://dx.doi.org/10.1016/j.foodchem.2014.07.094
http://dx.doi.org/10.1016/j.watres.2016.01.029
http://dx.doi.org/10.1016/j.enconman.2016.02.013
http://dx.doi.org/10.1016/j.enconman.2016.02.013
http://dx.doi.org/10.5815/ijigsp.2016.03.01
http://dx.doi.org/10.1016/S0169-2070(97)00044-7
http://dx.doi.org/10.1016/S0169-2070(97)00044-7
http://dx.doi.org/10.4103/0973-7847.70902
http://dx.doi.org/10.1136/jcp.54.3.176
http://dx.doi.org/10.1111/j.1541-4337.2011.00156.x
http://dx.doi.org/10.1007/s00204-011-0774-2
http://dx.doi.org/10.3390/ijms12042112
http://dx.doi.org/10.3390/ijms12042112
http://dx.doi.org/10.1016/j.fct.2010.08.007
http://dx.doi.org/10.3390/molecules16010251
http://dx.doi.org/10.1006/abio.1996.0292
http://dx.doi.org/10.1016/j.aca.2012.11.051
http://dx.doi.org/10.1016/j.aca.2012.11.051


Cerit, I. et al.	 J. Food Nutr. Res., Vol. 56, 2017, pp. 138–148

148

Screening of 70 medicinal plant extracts for antioxi-
dant capacity and total phenols. Food Chemistry, 
94, 2006, pp. 550–557. DOI: 10.1016/j.food-
chem.2004.12.004.

	18.	Dudonne, S.: Comparative study of antioxidant 
properties and total phenolic content of 30 plant 
extracts of industrial interest comparative study of 
antioxidant properties and total phenolic content of 
30 plant extracts of industrial interest using DPPH, 
ABTS, FRAP, SOD, and ORAC assays. Comparative 
and General Pharmacology, 57, 2009, pp. 1768–1774. 
DOI: 10.1021/jf803011r.

	19.	Zahra, S. – Jafar, V. – Omid, A. S.:  Antioxidant 
activity and total phenolic contents of some date 
varieties from Saravan Region, Baluchistan, Iran. 
Journal of Medicinal Plants Research, 9, 2015, 
pp. 78–83. DOI: 10.5897/JMPR2014.5676.

	20.	Hosu, A. – Cristea, V.-M. – Cimpoiu, C.: Analysis of 
total phenolic, flavonoids, anthocyanins and tannins 
content in Romanian red wines: Prediction of anti-
oxidant activities and classification of wines using 
artificial neural networks. Food Chemistry, 150, 2014, 
pp. 113–118. DOI: 10.1016/j.foodchem.2013.10.153.

	21.	Cimpoiu, C. – Cristea, V. M. – Hosu, A. – Sandru, M. – 
Seserman, L.: Antioxidant activity prediction and clas-
sification of some teas using artificial neural net-
works. Food Chemistry, 127, 2011, pp. 1323–1328. 
DOI: 10.1016/j.foodchem.2011.01.091.

	22.	Behroozi Khazaei, N. – Tavakoli, T. – Ghassemian, H. – 
Khoshtaghaza, M. H. –Banakar, A.: Applied machine 
vision and artificial neural network for modeling and 
controlling of the grape drying process. Computers 
and Electronics in Agriculture, 98, 2013, pp. 205–213. 
DOI: 10.1016/j.compag.2013.08.010.

	23.	Buciński, A. – Zieliński, H. – Kozłowska, H.: 
Artificial neural networks for prediction of antioxi-
dant capacity of cruciferous sprouts. Trends in Food 
Science and Technology, 15, 2004, pp. 161–169. DOI: 
10.1016/j.tifs.2003.09.015.

	24.	Lu, H. – Zheng, H. – Lou, H. – Jiang, L. – Chen, Y. – 
Fang, S.: Using neural networks to estimate the loss-
es of ascorbic acid, total phenols, flavonoid, and anti-
oxidant activity in asparagus during thermal treat-
ments. Journal of Agricultural and Food Chemistry, 
58, 2010, pp. 2995–3001. DOI: 10.1021/jf903655a.

	25.	Faria Silva, S. – Rodrigues Anjos, C. A. – Nunes 
Cavalcanti, R. – dos Santos Celeghini, R. M.: 

Evaluation of extra virgin olive oil stability by arti-
ficial neural network. Food Chemistry, 179, 2015,  
pp. 35–43. DOI: 10.1016/j.foodchem.2015.01.100.

	26.	Torrecilla, J. S. – Mena, M. L. – Yáñez-
Sedeño, P. – García, J.: Application of artificial 
neural network to the determination of phenolic 
compounds in olive oil mill wastewater. Journal 
of Food Engineering, 81, 2007, pp. 544–552. DOI: 
10.1016/j.jfoodeng.2006.12.003.

	27.	Wojdyło, A. – Oszmiański, J. – Czemerys, R.: 
Antioxidant activity and phenolic compounds in 
32 selected herbs. Food Chemistry, 105, 2007, 
pp. 940–949. DOI: 10.1016/j.foodchem.2007.04.038.

	28.	Gao, X. – Ohlander, M. – Jeppsson, N. – Björk, L. – 
Trajkovski, V.: Changes in antioxidant effects and 
their relationship to phytonutrients in fruits of sea 
buckthorn (Hippophae rhamnoides L.) during matu-
ration. Journal of Agricultural and Food Chemistry, 
48, 2000, pp. 1485–1490. DOI: 10.1021/jf991072g.

	29.	Zurada, J. M.: Introduction to artificial neural sys-
tems. St. Paul : West Publishing Company, 1992. 
ISBN: 0314933913.

	30.	Rumelhart, D. E. – McClelland, J. L.: Parallel distri
buted processing: Explorations in the microstructure 
of cognition : Foundations (Volume 1). San Diego : 
MIT Press, 1986. ISBN: 9780262181204. 

	31.	Rojas, R. R.: Neural Networks: A systematic 
introduction. New York : Springer, 1996. ISBN: 
3540605053.

	32.	Yu, H. – Wilamowski, B. M.: Levenberg-Marquardt 
Training. In: Wilamowski, B. M. – Irwin, J. D. (Eds.): 
The industrial electronics handbook - Intelligent 
systems. 2th edition. Boca Raton : CRC Press, 2011, 
pp. 12.1–12.15. ISBN: 9781439802830.

	33.	Haykin, S.: Neural networks: A comprehensive foun-
dation. 2th edition. Ontario : Prentice Hall, 1998. 
ISBN-13: 9780132733502.

	34.	Ramachandran, K. M. – Tsokos, C. P.: Mathematical 
statistics with applications in R. 2th edition. 
Amsterdam : Elsevier, 2014. ISBN: 9780124171138.

	35.	Alpar, R. Uygulamali istatistik ve geçerlik-güve-
nirlik. (Applied statistic and validation-reliability.) 
Ankara : Detay, 2010, ISBN: 9786055681876. In 
Turkish.

Received 23 November 2016; 1st revised 10 February 2017; 
accepted 5 April 2017; published online 5 May 2017.

http://dx.doi.org/10.1016/j.foodchem.2004.12.004
http://dx.doi.org/10.1016/j.foodchem.2004.12.004
http://dx.doi.org/10.1021/jf803011r
http://dx.doi.org/10.5897/JMPR2014.5676
http://dx.doi.org/10.1016/j.foodchem.2013.10.153
http://dx.doi.org/10.1016/j.foodchem.2011.01.091
http://dx.doi.org/10.1016/j.compag.2013.08.010
http://dx.doi.org/10.1016/j.tifs.2003.09.015
http://dx.doi.org/10.1021/jf903655a
http://dx.doi.org/10.1016/j.foodchem.2015.01.100
http://dx.doi.org/10.1016/j.jfoodeng.2006.12.003
http://dx.doi.org/10.1016/j.foodchem.2007.04.038
http://dx.doi.org/10.1021/jf991072g

	Estimation of antioxidant activity of foods using artificial neural networks 
	Authors
	Summary
	Materials and methods 
	Results and discussion 
	Conclusions
	Acknowledgements
	References


