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Regulation EC No 110/2008 [1] lays down rules 
on the definition and description of spirit drinks as 
well as on the protection of geographical indica-
tions. A geographical indication identifies a spirit 
drink as originating in the territory of a country, 
where a given quality or other characteristic of 
that spirit drink is essentially attributable to its 
geographical origin. According to this Regulation, 
juniper-flavoured spirit drinks are produced by fla-
vouring ethyl alcohol of agricultural origin and/or 
grain spirit and/or grain distillate with juniper (Ju-
niperus communis L. and/or Juniperus oxicedrus L.) 
berries. Some geographical indications (GI) in-
clude Spišská borovička, Slovenská borovička Ju-
niperus, Slovenská borovička, Inovecká borovička 
and Liptovská borovička (Slovakia).

Identification of the geographical origin of 
beverages is an important issue in food chemis-
try. A powerful method for determining the geo-
graphical origin is multivariate analysis of the data 
provided by analytical instruments [25]. Chroma-
tographic methods are relatively expensive, time-
consuming and require highly skilled operators. 
Common approach is the use of a multi-elemental 

analysis followed by stable-isotope ratio-based 
methods. Recently, attention has been focused on 
the development of non-invasive and non-destruc-
tive instrumental techniques such as ultraviolet 
(UV), visible (VIS) and infrared (IR) spectrosco-
py [610].

The application of fluorescence spectroscopy 
to the analysis of beverages is particularly attrac-
tive due to its high sensitivity. Fluorescence spec-
tra have allowed the classification of wines accord-
ing to variety, typicality and manufacturer [1113]. 
Classification of French and German wines was 
done using their excitation spectra [14]. The com-
bination of absorption (UV/VIS, near IR) and 
fluorescence spectroscopic data demonstrated 
the possibility of grouping single-malt whiskies 
according to their geographic area of production 
[15]. In a previous work, we demonstrated the fea-
sibility of synchronous fluorescence spectroscopy 
(SFS) to differentiate Slovak and foreign juniper-
flavoured spirit drinks [16]. 

Large amounts of spectral data, containing 
useful analytical information, noise, variabili-
ties, uncertainties and unrecognized features, are 
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the classes of the k closest objects. The best way 
of selecting k is by testing a set of k values (e.g. 
from 1 to 10), then, the k giving the lowest clas-
sification error can be selected as the optimum 
one [24]. SVM maps the sample data with specific 
kernel functions to a higher dimensional feature 
space to linearize the boundary and generate the 
optimal separating hyperplane. A number of ker-
nels can be used in SVM models. These include 
linear, polynomial, radial basis function (RBF) 
and sigmoid [25]. The supervised methods always 
comprise selecting the cross-validation method. 
Cross-validation methods separate the calibra-
tion dataset to training and validation subsets. The 
former is used to build the model, the latter is used 
to test and validate the model. When there are not 
enough samples to have an independent training 
and validation sets, leave-one-out cross-validation 
(LOOCV) is the best alternative. In LOOCV, the 
training set itself is used to validate the model. 
The model is repeatedly re-fit leaving out a single 
sample and then used to derive a prediction for 
the left-out sample [26]. 

The aim of this study was to assess the poten-
tial of SFS and pattern-recognition methods for 
distinguishing between commercial samples of 
Slovak juniper-flavoured spirit drinks. Non-su-
pervised pattern-recognition methods, HCA and 
PCA, were used for searching the natural group-
ing among drinks. Supervised methods were used 
to classify samples considering two types of clas-
sification criteria: distinguishing between drinks 
from different producers or distillates of different 
geographical indication and others. The super-
vised methods were based on two different data 
sets: (1) the first PC of the PCA performed on the 
SF spectra and (2) the SF spectra. LDA was ap-
plied to the first PC. GDA, kNN and SVM were 
applied to the SF spectra.

MATERIALS AND METHODS 

Samples
A total of 52 commercially available samples 

from five Slovak producers (code S1–S5) were col-
lected. Different products from the same producer 
and four (or five) bottles of the same product were 
sampled. Thus, sample coding included producer, 
product name, bottle (e.g. S1S1 meant producer 
S1, product S, bottle 1). All samples belonged to 
the “juniper-flavoured spirit drinks” category ac-
cording to EEC Regulations. Distillates of differ-
ent geographical indications included 33 samples 
(Borovička Slovenská, St. Nicolaus, Liptovský 
Mikuláš, Slovakia (S1S15) Borovička Inovecká, 

usually obtained from spectroscopic instruments. 
Thus, pattern recognition methods are required 
to extract as much relevant information from 
spectral data as possible. Non-supervised pattern 
recognition methods do not require any a priori 
knowledge about the group structure in the data, 
but instead produce the grouping, i.e. cluster-
ing, itself. This type of analysis is often very use-
ful at an early stage of an investigation and can be 
performed with simple visual techniques, such as 
hierarchical cluster analysis (HCA) or principal 
component analysis (PCA) [17]. When employing 
HCA, the original data are separated into a few 
general groups, each of which is further divided 
into still smaller groups until, finally, the indi-
vidual objects themselves remain [17, 18]. PCA is 
usually the first step in spectroscopic data explora-
tion. The aims of performing PCA are two. Firstly, 
PCA reduces the dimensions of the spectral data-
set by explaining a large part of the variance using 
synthetic factors, principal components (PCs). 
Therefore, the whole range of wavelengths can 
be compressed into the first few PCs. Secondly, 
PCA performed on spectral data makes it possi-
ble to draw similarity maps of the samples and to 
get spectral patterns [19, 20]. With supervised pat-
tern recognition methods, the number of groups is 
known in advance and representative samples of 
each group are available. This information is used 
to develop a suitable discrimination rule or discri-
minant function with which new, unknown sam-
ples can be assigned to one of the groups. 

There is also a difference between paramet-
ric and non-parametric methods. In the para-
metric methods, such as linear discriminant 
analysis (LDA) and general discriminant analy-
sis (GDA), a multivariate normal distribution of 
the data is assumed. Non-parametric methods, 
such as k-nearest neighbor (kNN) and support 
vector machine (SVM), are not based on distri-
bution statistics [21]. LDA is concerned with de-
termining the so-called discriminant functions 
as linear combinations of the descriptors, which 
best separate the classes according to minimiza-
tion of the ratio of within-class and between-class 
sum of squares. LDA requires that the number of 
variables (wavelengths) must be smaller than the 
number of samples in each group. Consequently, 
large spectral datasets with few samples cannot be 
analysed using LDA. Combining LDA with PCA 
overcomes this problem [22]. GDA utilizes a ge-
neral multivariate linear model to solve the discri-
minant function analysis problem. The discrimina-
tion is determined not only by the most significant 
wavelengths but also by all spectra [23]. In kNN 
method, the objects are classified according to 
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St. Nicolaus (S1I15), Liptovium borovička, 
St. Nicolaus (S1L15) Slo venská borovička Ju-
niperus, Old Herold, Trenčín, Slovakia (S2J15) 
Borovička Slo venská, Old Herold (S2S15) 
Spišská borovička, Frucona Trade Košice, Košice, 
Slovakia (S4P14) and Original Spišská borovička 
containing juniper berries, GAS Família, Stará 
Ľubovňa, Slovakia (S5P14). The other 19 samples 
were Slovak commercial brands of “juniper-fla-
voured spirit drinks”: Pravá Zbojnícka borovička 
Original containing juniper twig, St. Nicolaus 
(S1Z15) Slovenská borovička Koni ferum, Old 
Herold (S2K15) Original Slovak Juniper brandy, 
Imperator, Bratislava, Slovakia (S3M15) Origi-
nal Spiš borovička containing juniper twig, GAS 
Família (S5G14) (Tab. 1). The alcoholic degree 
ranged within 35–42% ethanol. The samples were 
stored at room temperature and analysed without 
any prior treatment.

Twelve samples (brands S4P, S5G and S5P) 
were detected as outlying samples and the remain-
ing 40 samples were treated by the pattern recog-
nition methods. The samples were divided into 
two groups by a method of HE et al. [27, 28]. The 
method selects the first n-1 samples in a group of 
every n samples. Thus, four samples selected from 
each group (five samples of the same product) 
were assigned to the calibration set, and used 
to build as well as to validate the models using 
LOOCV. The remaining samples were assigned to 
the prediction set and used as ‘unknown’ samples 
in the external prediction procedure. Thus, the 
cali bration and prediction set contained 32 sam-

ples (S1S14, S1I14, S1L14, S2J14, S2S14, 
S1Z14, S2K14 and S3M14) and 8 samples 
(S1S5, S1I5, S1L5, S2J5, S2S5, S1Z5, S2K5 and 
S3M5), respectively.

Fluorescence spectroscopy
Fluorescence spectra were recorded using 

a Perkin-Elmer LS 50 Luminescence spectro meter 
(Perkin-Elmer, Waltham, Massachusetts, USA) 
equipped with a Xenon lamp. Samples were placed 
in a 10 mm × 10 mm × 45 mm quartz cell. Excita-
tion and emission slits were both set at 5 nm. SF 
spectra were collected by simul taneously scanning 
the excitation and emission monochromator in the 
excitation wavelength range of 200–700 nm (with 
an interval of 1 nm), with constant wavelength 
differences  between them. SF spectra were re-
corded for  interval from 10 nm to 100 nm, in 
steps of 5 nm. Fluorescence measurements were 
done in triplicate for each sample. The spectro-
meter was interfaced to a computer supplied with 
FL Data Manager Software (Perkin-Elmer) for 
spectral acquisition and data processing. Fluores-
cence intensities were plotted as a function of the 
excitation wavelength. Contour maps of SF spec-
tra were plotted using Windows-based software 
OriginPro 7.5 (OriginLab, Northampton, Massa-
chusetts, USA).

Pattern-recognition methods 
HCA and PCA were used for searching the 

natural grouping among drinks. Agglomera-
tive cluster analysis, where similarity extent was 

Tab. 1. Samples used in the study.

Code 
of producer

Code 
of product

Number 
of bottles 

Producer Product name

Geographical indications

S1 S 5 St. Nicolaus (Liptovský Mikuláš, Slovakia) Borovička Slovenská

I 5 Borovička Inovecká

L 5 Liptovium borovička

S2 J 5 Old Herold (Trenčín, Slovakia) Slovenská borovička Juniperus

S 5 Borovička Slovenská

S4 P 4 Frucona Trade Košice (Košice, Slovakia) Spišská borovička

S5 P 4 GAS Família (Stará Ľubovňa, Slovakia) Original Spišská borovička*

Others

S1 Z 5 St. Nicolaus (Liptovský Mikuláš, Slovakia) Pravá Zbojnícka borovička Original**

S2 K 5 Old Herold (Trenčín, Slovakia) Slovenská borovička Koniferum

S3 M 5 Imperator (Bratislava, Slovakia) Original Slovak Juniper brandy

S5 G 4 GAS Família (Stará Ľubovňa, Slovakia) Original Spiš borovička**

* – containing juniper berries, ** – containing juniper twig.
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measured by Manhattan (city-block) distances, 
and cluster aggregation based on Ward’s method 
were used [17, 18]. PCA performed on fluores-
cence spectra made it possible to draw similarity 
maps of the samples and to get spectral patterns. 
Classification of objects was done by constructing 
similarity maps of the samples, using PCs chosen. 
The number of PCs was based on the eigenvalue 
criterion and the total variance explained [19, 20]. 
The spectral patterns corresponding to the PCs 

provided information about the characteristic 
peaks, which were the most discriminating for the 
samples observed on the similarity maps. 

Supervised methods were used to classify sam-
ples considering two types of classification crite-
ria: distinguishing between drinks from different 
producers (S1, S2 and S3) or distillates of differ-
ent geographical indications (S1S, S1I, S1L, S2J 
and S2S) and other drinks (S1Z, S2K and S3M). 
The methods were based on two different data 

Fig. 1. Total and individual synchronous fluorescence spectra of juniper-flavoured spirit drinks.

Total fluorescence spectra: A – S4P, B – S5G, C – S5P, D – S3M, individual fluorescence spectra E –  = 10 nm, F –  = 20 nm.

0

20

40

60

80

100

200 300 400 500 600 700
Excitation wavelength [nm]

W
av

el
en

gt
h 

in
te

rv
al

 n
m

[
]

A

0

20

40

60

80

100

200 300 400 500 600 700
Excitation wavelength [nm]

W
av

el
en

gt
h 

in
te

rv
al

 n
m

[
]

B

0

20

40

60

80

100

200 300 400 500 600 700
Excitation wavelength [nm]

W
av

el
en

gt
h 

in
te

rv
al

 n
m

[
]

C

0

20

40

60

80

100

200 300 400 500 600 700
Excitation wavelength [nm]

W
av

el
en

gt
h 

in
te

rv
al

 n
m

[
]

D

E F

0

20

40

60

80

100

250 300 350 400 450
Excitation wavelength [nm]

In
te

ns
ity

0

40

80

120

160

200

250 300 350 400 450
Excitation wavelength [nm]

In
te

ns
ity

S1

S3
S2

S1

S3
S2



Uríčková, V. – Sádecká, J. – Májek, P. J. Food Nutr. Res., Vol. 54, 2015, pp. 298–307

302

sets: (1) the first PCs of the PCA performed on 
the SF spectra; PCA was used as a tool for data-
set size and co-linearity reduction [22], and (2) the 
SF spectra in order to keep all the original infor-
mation. LDA was applied to the first PCs, while 
GDA, kNN and SVM were applied to the SF spec-
tra. The second approach was used when the first 
one did not produce a good classification. The 
performance of various supervised methods was 
evaluated and compared using a LOOCV method. 

Data were converted to ASCII and processed 
with Microsoft Office Excel 2010 software (Mi-
crosoft, Redmond, Washington, USA), Statistica 
version 7.0 (StatSoft, Tulsa, Oklahoma, USA) and 
MATLAB Version 7.0 (MathWorks, Natick, Mas-
sachusetts, USA). 

RESULTS AND DISCUSSION

Synchronous fluorescence spectra 
The contour plots of total SF spectra were 

obtained by plotting the fluorescence inten-
sity as a function of excitation wavelength (ex) 
and wavelength interval . Fig. 1 (A–D) shows 
some of the total SF spectra. Brands S4P, S5G 
and S5P had an abnormally high fluorescence in-
tensity below ex = 300 nm (Fig. 1A–1C), which 
could be attri buted to (bi)phenyl derivatives [29, 
30]. Therefore, it was always easy to detect these 
products by visual inspection of the spectra. At 
higher excitation wavelengths, there were two less 
intense bands, the former with excitation in the 
wavelength region of 350440 nm (S5G, S5P), and 
the latter with excitation at 520600 nm (S5G), 
providing a much better way of differentiating 

between these three brands. A spectral region 
around 400 nm and around 600 nm were pre-
liminarily attributed to coumarins and pigments 
of the chlorophyll group [3135], respectively. It 
is noteworthy that the brands S4P, S5P and S5G 
are regarded as good quality brands coming from 
Eastern Slovakia. Moreover, S4P is a “pure” 
drink, in contrast to S5P and S5G, which contain 
berries and twig, respectively. All other brands 
(32 samples, S1, S2, S3) beyond those mentioned 
above showed less intense bands in the wavelength 
region below 350 nm. An example of this is the to-
tal SF spectrum of brand S3M (Fig. 1D). 

The shape and intensity of the SF spectra de-
pended on the difference between excitation and 
emission wavelengths (). Fig. 1 (E, F) presents 
the SF spectra of samples recorded at  of 10 nm 
and 20 nm. 

For  = 10 nm (Fig. 1E), SF spectra of 
S1 brands showed a band at wavelengths of 
260305 nm with a maximum at about 272 nm 
or 282 nm, and two overlapping bands at wave-
lengths of 307334 nm with maxima at 317 nm and 
324 nm. SF spectra of S2 brands showed a maxi-
mum at about 272 nm or 287 nm, and a less in-
tensive band at wavelengths of 310330 nm with 
a maximum at about 324 nm. SF spectra of S3 
brand showed a high intensive band with a maxi-
mum at about 287 nm, and two overlapping bands 
with maxima at 317 nm and 324 nm. 

For  = 20 nm (Fig. 1F), the fluorescence in-
tensity of all bands increased and changes in their 
relative intensities were noted. Fluorescence maxi-
ma were black-shifted to 270 nm, 280 nm, 306 nm 
and 323 nm for S1 brands; to 266 nm, 282 nm and 
304 nm for S2 brands; and to 282 nm, 305 nm and 
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Fig. 2. Hierarchical cluster analysis dendrogram for synchronous fluorescence spectra recorded at  = 10 nm.
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323 nm for S3 brand. A further increase of fluo-
rescence intensity, together with band broadening, 
was apparent for the higher value of . Based on 
Fig. 1 (E, F), it can be suggested that SFS offers 
a promising approach for differentiation of drinks 
from different producers. Wavelength range selec-
tion was done by visual inspection of SF spectra. 
In general, the scatter bands are observed below 
240 nm and the spectra do not present relevant in-
formation in the region above 350 nm. Therefore, 
the spectral range between 250 and 350 nm was 
used to build the pattern recognition models.

Non-supervised pattern-recognition methods
HCA performed separately on SF spectra re-

corded at  of 10100 nm in the excitation wave-
length range 250–350 nm was used for searching 
the natural grouping among drinks S1, S2 and S3. 
The best result was achieved using fluorescence 
spectra recorded at   10 nm (Fig. 2). At a simi-
larity level of 48%, six clusters were found. Five 
of them consisted of four samples of individual 

brands (S3M, S2J, S2K, S1L and S1Z). One clus-
ter included two subclusters; the first of them in-
cluded four samples of S2S brand, and the second 
subcluster included eight samples of brands S1I 
and S1S.

PCA was used to examine the similarity among 
the S1, S2 and S3 samples. Applying PCA to SF 
spectra recorded at  = 10 nm in the excitation 
wavelength range of 250–350 nm, the first five 
PCs explained 99.0% of the total variance, where 
PC1, PC2, PC3, PC4 and PC5 accounted for 
56.8%, 28.4%, 12.8%, 0.8% and 0.2% of the to-
tal variance, respectively. Eigen values accounted 
for by each principal component (PC1PC5) were 
18.2, 9.1, 4.1, 0.2 and 0.1, respectively. Fig. 3A 
shows the score plot of the first two PCs. PC1 pro-
moted the separation of three groups: the group 
of S1 brands (high positive score), the group of 
S2J and S2K brands (low positive score) and the 
group of S2S and S3M brands (negative score). In 
addition, PC1 indicated the proximity between S1I 
and S1L brands, and PC2 indicated the proxi mity 

Fig. 3. Principal component analysis similarity map (score plot) 
for synchronous fluorescence spectra obtained at  = 10 nm.

A – PC1 vs PC2, B – PC1 vs PC3, C – PC1 vs PC4, D – PC1 vs PC5.
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between S3M, S2J and S2K. PC3, similar to PC2, 
roughly separated brand S1Z from other brands 
(Fig. 3A–3B), as S1Z had a negative score. The 
differentiation between samples was partially im-
proved by including PC4 and PC5 (Fig. 3C–3D). 
The loading for PC1 showed the importance of 
the bands in the range of 280–295 nm, while PC2 
corresponded to variations in the bands at 275 nm 
and 325 nm. PC3 related to the changes in the 
bands with maxima at 270 nm and 306 nm, and 
PC4 corresponded to the bands at 305 nm (data 
not shown). 

Supervised pattern-recognition methods

Discrimination between the drinks from three 
producers

The ability of SF spectra to differentiate 
between the drinks from three producers was in-
vestigated by applying LDA to the first five PCs of 
PCA performed on the SF spectra ( = 10 nm, 
250–350 nm). In both the calibration set and the 
prediction set, 100% correct classification was 
observed for S1 and S3 samples (Tab. 2), while 
only 67% of S2 samples were properly classi-
fied. S2J samples were classified as belonging to 
S3 group. Because this classification was unsatis-

factory, we chose to discriminate the samples by 
GDA, kNN and SVM based on the SF spectra (at 
 = 10 nm) in the range of 250–350 nm with an 
interval of 1 nm. Using GDA, 100% correct clas-
sification was observed for S1, S2 and S3 samples 
(Tab. 2). Classification performed using the kNN 
algorithm gave a significantly lower rate of correct 
classification of S2 samples. The optimum number 
k of neighbours used to predict an unknown was 
determined from the highest number of total 
correctly classified samples obtained in cross-va-
lidation with k set at 1 through 10 (Tab. 3). The 
k values were chosen in the range from 1 to 10 due 
to the size of our sample set, which was too small 
for larger values of k. Samples S1 and S3 were cor-
rectly classified by kNN for k values in the range 
from 1 to 5, while only 58% of S2 samples were 
correctly classified in the cross-validation step. All 
S2S samples and one S2J sample were classified as 
belonging to S1 group. In the prediction step, S2S 
and S2J samples were again found in the S1 group. 
The total rate of correct classification decreased at 
higher k values. Finally, SVM with different kernel 
functions (linear, polynomial, RBF and sigmoid) 
was tested. The performance of various SVM-
based algorithms was evaluated and compared us-
ing a LOOCV method. Because the results were 

Tab. 2. Discrimination of juniper-flavoured spirit drinks from different Slovakian producers 
using various pattern recognition methods.

Producer
S1 S2 S3 Total

c p c p c p c p

PCA-LDA

[%] 100 100 67 67 100 100 87 87

S1 16 4 0 0 0 0 16 4

S2 0 0 8 2 0 0 8 2

S3 0 0 4 (S2J) 1 (S2J) 4 1 8 2

GDA

[%] 100 100 100 100 100 100 100 100

S1 16 4 0 0 0 0 16 4

S2 0 0 12 3 0 0 12 3

S3 0 0 0 0 4 1 4 1

kNN

[%] 100 100 58 33 100 100 84 75

S1 16 4 5 (S2S, S2J) 2 (S2S, S2J) 0 0 21 6

S2 0 0 7 1 0 0 7 1

S3 0 0 0 0 4 1 4 1

SVM

[%] 100 100 100 100 100 100 100 100

S1 16 4 0 0 0 0 16 4

S2 0 0 12 3 0 0 12 3

S3 0 0 0 0 4 1 4 1

PCA-LDA – principal component analysis – linear discriminant analysis, GDA – general discriminant analysis, kNN – k-nearest 
neighbor method, SVM – support vector machine method, c – calibration set (results from cross-validation), p – prediction set, 
in brackets misclassified samples.
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worse with non-linear kernels, it was selected 
to use linear kernels (Tab. 4). Thus, using SVM 
with linear kernels, 100% correct classification 
was observed for S1, S2 and S3 samples (Tab. 2). 
The comparison of the results showed that drinks 
from producer S1 and S3 were correctly classified 
regardless of the supervised method used. How-
ever, GDA and SVM performed better than other 
methods for discriminating the drinks from pro-
ducer S2. It is worth mentioning that PCA-LDA 
and kNN, although extensively used in chemomet-
rics, did not provide results as good as GDA and 
SVM, at least for this particular problem.

Discrimination between distillates of different geo-
graphical indications and other drinks

In order to discriminate between distillates of 
different geographical indications (S1S, S1I, S1L, 
S2J and S2S) and other drinks (S1Z, S2K and 
S3M), LDA was again applied to the first five PCs 
of PCA performed on SF spectra ( = 10 nm, 
250–350 nm), or GDA to SF spectra ( = 10 nm) 
in the range of 250–350 nm with an interval of 
1 nm. LDA based on PCs resulted in totally 87% 
correct classification (Tab. 5); samples S2J with 
geo graphical indication were classified incorrectly 
in both the calibration set and in the prediction set. 
Using SF spectra, GDA produced in total 100% 
correct classification (Tab. 5). Classification per-
formed with the kNN algorithm gave a lower rate 
of correct classification. The optimum number 
k of neighbours, based on the highest number of 

Tab. 5. Discrimination between distillates of different geographical indications 
and other drinks using various pattern recognition methods.

Sample
GI Other Total

c p c p c p

PCA-LDA

[%] 80 80 100 100 87 87

GI 16 4 0 0 16 4

Other 4 (S2J) 1 (S2J) 12 3 16 4

GDA

[%] 100 100 100 100 100 100

GI 20 5 0 0 20 5

Other 0 0 12 3 12 3

kNN

[%] 90 80 83 67 87 75

GI 18 4 2 (S2K) 1 (S2K) 20 5

Other 2 (S2J) 1 (S2J) 10 2 12 3

SVM

[%] 100 100 67 67 87 87

GI 20 5 4 (S2K) 1 (S2K) 24 6

Other 0 0 8 2 8 2

PCA-LDA – principal component analysis – linear discriminant analysis, GDA – general discriminant analysis, kNN – k-nearest 
neighbor method, SVM – support vector machine method, GI – geographical indications, c – calibration set (results from cross-
validation), p – prediction set, in brackets misclassified samples.

Tab. 3. Total correct classification in the cross-
validation using the k nearest neighbour method.

k
Rate of correct classification [%]

Between producers
Between geographical 
indications and others

1 84 87

2 84 87

3 84 87

4 84 87

5 84 69

6 78 69

7 78 44

8 78 41

9 78 41

10 72 48

Tab. 4. Total correct classification in the cross-
validation using the support vector machine.

Kernel 
function

Rate of correct classification [%]

Between producers 
S1, S2 and S3

Between geographical 
indications and others 

Linear 100 84

Polynomial 75 87

RBF 96 79

Sigmoid 96 84

RBF – radial basis function.
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total correctly classified samples obtained in cross-
validation, was in the range from 1 to 4 (Tab. 3). 
Two S2J and two S2K samples were classified in-
correctly in cross-validation, leading to totally 87% 
correct classification. In the prediction step, S2J 
and S2K samples were again misclassified (Tab. 5). 
The same S2J samples misclassified by kNN were 
also misclassified by PCA-LDA. The total rate of 
correct classification decreased at higher k values. 
The results showed that, in SVM classification, the 
maximum correct classification in cross-validation 
was achieved using polynomial kernels (Tab. 4). In 
this case, 100% correct classification was observed 
for geographical indication group and 67% for 
group of others, because S2K samples were again 
misclassified (Tab. 5). The discrimination between 
samples with and without geographical indication 
seems to be more challenging than that between 
producers. Only GDA resulted in totally 100% 
correct classification.

CONCLUSIONS

The results suggest that SFS is a promising 
approach for classification of Slovak juniper-fla-
voured spirit drinks. The SF spectra recorded at 
constant wavelength difference of 10 nm in the 
excitation wavelength range 250–350 nm were 
found to provide the best results, with 100% cor-
rect classification of juniper-flavoured spirit drinks 
of three producers using GDA or SVM. In addi-
tion, 100% correct classification was observed for 
distillates of different geographical indications 
and other drinks using GDA. The advantages of 
the suggested procedures are that neither sample 
preparation nor specifically qualified personnel 
are required, data acquisition is relatively simple 
and total time of the analysis is three minutes.
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