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Meat represents a cellular system with great 
bio chemical and structural complexity, created by 
a network of muscular fibres surrounded by con-
nective tissue. One of the most important consti-
tuents of meat is water [1, 2]. Physicochemical, 
sensory and technological properties of fresh meat 
are related to water content. Water is held in myo-
fibrils, functional proteins of meat, but also it may 
exist in the intracellular space between myofibrils 
and sarcoplasm [3]. The technique of dehydration 
is probably the oldest method of food preservation 
practiced by mankind [4]. Osmotic treatment (OT) 
is a non-thermal process that implies food material 
immersion in hypertonic solution. The difference 
of the chemical potential between the material 

and the solution promotes two main fluxes: efflux 
of water from the material to the osmotic solution, 
and influx of soluble solids from the osmotic solu-
tion to the material. As osmotic agents, saccharose 
and salts (such as NaCl) are often used. Previous 
research [5] showed that the process of osmotic 
treatment positively influenced the microbiologi-
cal profile and safety of osmo-treated pork meat, 
while the preliminary sensory analysis showed that 
meat processed in this manner had satisfactory 
sensory characteristics. The use of sugar beet mo-
lasses during OT improved the nutritional profile 
of pork meat, causing that the chemical composi-
tion after OT got to the optimum range for human 
health. Sugar beet molasses is an excellent medium 
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volume changes (swelling) of biological materials 
are often proportional to the amount of absorbed 
water. It is generally accepted that the degree of 
rehydration is dependent on the degree of cellu-
lar and structural disruption. In some studies that 
considered food structure in the process model-
ling, changes in sample volume were explained in 
terms of water loss throughout the process [22]. 
The time needed to reach the minimum volume 
was determined with a proposed equation [13]. 
The initial shrinkage period was observed to be 
followed by a swelling period.

Response surface methodology (RSM) is 
an effective tool for optimizing a variety of food 
processes including rehydration [23]. The main 
advantage of RSM is the reduced number of ex-
perimental runs that provide sufficient informa-
tion for statistically valid results. The RSM equa-
tions describe effects of the test variables on the 
observed responses, determine test variables inter-
relationships and represent the combined effect of 
all test variables in the observed responses, ena-
bling the experimenter to make efficient explora-
tion of the process. In case of food processes, non-
linear models are more suitable due to variability 
and nonlinear behaviour of natural products. In 
addition, many production processes involve fluc-
tuation in process conditions, and rely to a great 
extent on the skill and experience of operators.

Artificial neural network (ANN) models re-
cently gained momentum for process model-
ling and control. ANN models are recognized as 
a good tool for dynamics modelling because they 
do not require parameters of physical models, 
have an ability to learn the solution of problems 
from a set of experimental data, and are capable 
to handle complex systems with nonlinearities 
and interactions between decision variables [24]. 
Due to the complexity of the rehydration process, 
several authors  recommended the use of ANN for 
modelling mass transfer kinetics during the rehy-
dratation process [25, 26]. Nevertheless, few works 
have been done on the application of ANN to 
model the rehydration process. Also, no study was 
published on the effect of process conditions on 
rehydration percentage (R) and volume changes 
(dV) of pork meat.

The aim of here presented article was to inves-
tigate the effects of temperature and processing 
time on the mass transfer phenomena during rehy-
dration of pork meat, that were OT in sugar beet 
molasses or, saccharose solutions, to model R and 
dV, as a functions of the process variables. The 
performance of five ANN models was compared 
with the performance of second order polynomial 
(SOP) models.

for OT, primarily due to the high dry matter (80%) 
and the specific nutrient content (approxi mately 
51%, saccharose, 1% raffinose, 0.2% glucose and 
fructose, 5% proteins, 6% betaine, 1.5% nucleo-
sides, purine and pyramidine bases, organic acids 
and bases), which provide high osmotic pressure in 
the solution [6].

In OT processes, heat and mass transfer flows 
can modify physicochemical properties of the ma-
terial such as chemical composition [7], mechani-
cal properties [8, 9], volume and porosity. The 
quality of the dehydrated product depends on the 
extent of these changes. Regarding the changes in 
volume and porosity, high shrinkage and low po-
rosity lead to products with poor rehydration ca-
pability [10]. Furthermore, the changes in volume 
and dimensions must be considered for model-
ling the mass transfer during OT [11, 12]. Volume 
changes during OT take place mainly due to com-
positional changes and mechanical stresses associ-
ated to mass fluxes. These changes were analysed 
as variations in the volumes of solid, liquid and 
gas phases of the food material during the process 
[13], and were correlated with changes in mois-
ture content and weight reduction [14], or with 
water loss [15]. Structural parameters such as sam-
ple volume, specific dimensions and porosity are 
closely related not only to food behaviour in mass 
transfer processes, but also to other aspects such 
as food sensory and physical properties.

Dehydrated products need to be rehydrated 
before consumption or further processing [16]. 
During rehydration, absorption of water into the 
tissue results in an increase in the mass. Simul-
taneously, leaching out of solutes (saccharose, 
acids, minerals, vitamins) also occurs, and both 
phenomena are influenced by the nature of the 
product and conditions employed for rehydra-
tion [17, 18]. A study of rehydration kinetics can 
be used to ascertain the net extent of injuries sus-
tained by any material during rehydration and any 
other processing step prior to it [19]. Rehydration 
is influenced by several factors, grouped as intrin-
sic factors (such as product chemical composition, 
pre-drying treatment, product formulation, drying 
techniques and conditions and by the post-drying 
procedure) and extrinsic factors (such as composi-
tion of immersion media, temperature and hydro-
dynamic conditions) [16].

The literature is inconsistent on rehydration 
characteristics with regard to food-to-water ra-
tio, temperature of rehydration, level of agitation 
and procedure for the determination of moisture 
content [19]. Rehydration can be considered as 
a measure of the injury to the material caused by 
drying and OT [20]. It was shown [21] that the 
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MATERIALS AND METHODS 

Fresh pork (Musculus triceps brachii; 24 h post 
mortem) was bought in local butcher store and 
transported to the laboratory, where it was held at 
about 4 °C for 1–2 h. The muscles were trimmed of 
external fat and connective tissues, and manually 
cut into approximately (1 × 1 × 1) cm cubes with 
a sharp sterile knife. Meat samples were osmoti-
cally treated at (23 ± 2) °C for 5 h in a solution 
of sugar beet molasses (soluble solid content 
80.00 kg·l-1) – solution 1, and in saccharose-salt 
solution in distilled water (1 200 g of saccharose 
and 350 g of NaCl diluted in 1 litre of distilled wa-
ter) – solution 2. The solution to sample mass ratio 
was 10 : 1 for both cases, to avoid significant dilu-
tion of the medium by water removal, which would 
lead to local reduction of the osmotic driving force 
during the process [27, 28]. Meat cubes were fully 
immersed and held in the solution using stainle ss 
wire mesh. Experiment was carried out using labo-
ratory glasses (volume V = 500 ml each). On every 
5 min, meat samples in osmotic solutions were 
stirred with hand-held agitator in order to induce 
sample-solution contact and provide better ho-
mogenization of the osmotic solution. After being 
removed from the osmotic solution, samples were 
gently blotted with a tissue paper in order to re-
move excessive solution from the surface, and then 
they were analysed.

Rehydration
Osmoti cally treated meat samples were re-

hydrated by immersing meat cubes in water bath 
at three different constant temperatures (20 °C, 
40 °C and 60 °C). The samples were withdrawn 
from the bath at different immersion periods 
(15 min, 30 min, 45 min and 60 min) and were 
weighed after being blotted. Finally, rehydration 
percentage R was calculated as:

 
(1)

where Mt and M0 is the sample mass at time t 
(rehydrated samples) and at start of rehydration 
(t = 0, dried samples), respectively. 

Dry matter content of the fresh and treated 
samples was determined by drying the material at 
105 °C for 24 h in a heat chamber (Instrumentaria 
Sutjeska, Zagreb, Croatia). 

Percentage of volume changes dV was calcu-
lated as:

 
(2)

where Vt and V0 is the sample volume at time t 

(rehydrated samples) and at start of rehydration 
(t = 0, dried samples), respectively.

All sample dimensions (width, height and 
depth) of meat cubes were measured before and 
after rehydration using digital caliper, and approx-
imate volume was calculated. 

ANOVA and response surface methodology 
Before modelling by ANN, it is recommended 

to make some statistical data analysis, like analy-
sis of variance (ANOVA) to check the significant 
effect of the input variables over the output, and 
to justify the use of ANN model by coefficient of 
determination r2. This is recommended in particu-
lar in the case when relatively small number of ex-
perimental measurements are being used for ANN 
model development. The RSM method was select-
ed to estimate the main effect of solution type (so-
lution 1 or 2) on mass transfer variables during the 
rehydration of pork meat cubes. The independent 
variables were rehydration time (t) of 15 min, 30 
min, 45 min and 60 min, and temperature (T) of 
20 °C, 40 °C and 60 °C. The dependent variables 
were the responses: rehydration percentage of the 
samples treated with solution 1 or 2 (Y1 and Y2, 
respectively), and volume changes of the samples 
treated with solution 1 or 2 (Y3 and Y4, respective-
ly). The accepted experimental design included 
3 × 4 = 12 experiments. All models were fitted to 
the response surface generated by the experimen-
tal design [29]. The following SOP model was fit-
ted to the data:

 (3)

where k0, ki, kii, kij are constant regression co-
efficients. The significant terms in the model were 
found by ANOVA for each response.

Database preparation
The mean ± standard deviation (SD) values of the 

experimentally measured process variables and de-
sired outputs are given in Tab. 1. StatSoft Statistica 
ver. 10 (StatSoft, Tulsa, Oklahoma, USA) was used 
to randomly divide the collected data into two groups: 
training data (80%) and testing data (20%). Testing 
data set was used to examine the network generali-
zation capability. To improve the behaviour of ANN, 
both input and output data were normalized [30, 31], 
according to Eq. 4:

 
(4)

where xi is i-th case, with measured temperature 
(T) and immersion time (t), and R and dV from 
Tab. 1. Normalized variables gained values in the 
range of 0–1, and had no physical meaning.
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Artificial neural network modeling
In this article, a multi-layer perception models 

(MLP) that consisted of one input layer, one 
hidden layer and one output layer, which is the 
most common, flexible and general-purpose kind 
of ANN, was evaluated [31]. It is necessary to per-
form a trial and error procedure, until a good net-
work behaviour is obtained, and it is also necessary 
to choose the number of hidden layers and the 
number of processing elements (also called “neu-
rons”) in the hidden layer(s). It is advisable to 
use just one layer, because the use of more layers 
could lead to a problem of local minima [31]. The 
number of weights can be taken as the number of 
training exemplars divided by 10. Some sugges-
tions regarding the number of hidden neurons 
are as follows: this number should be between the 
size of the input layer and the size of the output 
layer, it should be 2/3 the size of the input layer, 
plus the size of the output layer, or it should be 
less than twice the size of the input layer. The 
ANN procedure of StatSoft Statistica was used 
to model ANN, and the number of hidden nodes 
varied from 4 to 8, 2 inputs and 4 outputs, with 
32 to 60 weight coefficients (depending on the 
number of hidden nodes). Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm, implement-
ed in StatSoft Statistica’s evaluation routine, was 
used for ANN modelling. The information passes 
between layers through a “transfer” or “activa-
tion” functions. This function is typically nonlinear 
for hidden layers and linear for the output layer. 
In most applications, hyperbolic tangent function 
behaves better as compared to other functions [31, 

32]. Coefficients associated with the hidden layer 
(both weights and biases) are grouped in matrices 
W1 and B1. Similarly, coefficients associated with 
the output layer are grouped in matrices W2 and 
B2. If Y is the matrix of the output variables, f1 and 
f2 are transfer functions in the hidden and output 
layers, respectively, and X is the matrix of input 
variables, it is possible to represent the neural net-
work, by using matrix notation, as follows [33, 34]:

 (5)

Weights (elements of matrices W1 and W2) are 
determined during the training step, which up-
dates them using optimization procedures to mini-
mize the error function between network outputs 
and experimental outputs [32–35], according to 
the sum of squares (SOS) and BFGS algorithm, 
used to speed up and stabilize convergence [30]. 
SOS between the experimental and the network-
predicted values was used as the iteration termi-
nation criterion, as StatSoft Statistica’s default. As 
soon as the cross-validation SOS starts to increase, 
the training step is terminated; otherwise, the 
training step ends after a fixed number of epochs 
or training cycles. 

Training, testing and system implementation
The StatSoft Statistica ver. 10 commercial soft-

ware was used to develop the ANN model. The 
training step was started after ANN architecture 
was defined. The training process was repeated 
several times in order to get the best performance 
of ANN, due to a high degree of variability. It was 
accepted that the successful training was achieved 

Tab. 1. Experimental data for rehydration of pork meat cubes.

Case No. T [°C] t [min] R1 [%] R2 [%] dV1 [%] dV2 [%]

1 20 15 11.1 ± 0.7 b 9.3 ± 0.5 d 3.6 ± 0.1 b 4.6 ± 0.2 b

2 20 30 20.0 ± 1.1 d 17.4 ± 0.7 f 6.0 ± 0.1 e 5.4 ± 0.1 b

3 20 45 20.2 ± 1.2 d 23.2 ± 1.1 g 4.1 ± 0.1 b 7.3 ± 0.1 d

4 20 60 24.1 ± 0.9 g 26.2 ± 0.4 h 14.9 ± 0.7 a 9.6 ± 0.7 a

5 40 15 5.5 ± 0.3 e 2.0 ± 0.1 e 3.7 ± 0.1 b 10.1 ± 0.2 a

6 40 30 8.6 ± 0.3 f 4.4 ± 0.2 c 16.1 ± 0.7 a 22.6 ± 1.0 g

7 40 45 12.7 ± 0.9 b 5.4 ± 0.1 c 16.2 ± 0.7 a 16.0 ± 0.7 e

8 40 60 11.3 ± 0.2 b 7.9 ± 0.3 d 16.3 ± 1.3 a 9.3 ± 0.2 a

9 60 15 –7.4 ± 0.3 a –8.0 ± 0.2 b 16.1 ± 0.5 a 9.1 ± 0.4 a

10 60 30 –7.9 ± 0.1 a –8.8 ± 0.4 b 8.5 ± 0.2 f 18.9 ± 0.5 f

11 60 45 –9.4 ± 0.7 ac –11.1 ± 0.4 a –0.7 ± 0.02 d 5.8 ± 0.1 b

12 60 60 –10.9 ± 0.7 c –12.0 ± 0.6 a –10.0 ± 0.7 c –7.4 ± 0.2 c

Values with the same letter in superscript are not statistically different, p < 0.05 (post-hoc Tukey’s HSD test). 
T – temperature, t – time, R1 – rehydration of meat treated in solution 1, R2 – rehydration of meat treated in solution 2, dV1 – 
volume change of meat treated in solution 1, dV2 – volume change of meat treated in solution 2.
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when learning and cross-validation curves (SOS 
versus epochs) approached to zero. Testing was 
carried out with the best weights stored during 
the training step. Correlation coefficient and SOS 
were used as parameters to check the performance 
of ANN. The ANN model can be implemented 
using an algebraic system of equations, to pre-
dict R and dV, by substitution of the correspond-
ing weights and biases, and coefficients matrices 
in Eq. 5. This step can be easily achieved in some 
spreadsheet calculus (Microsoft Office Excel 2007, 
Microsoft, Redmond, Washington, USA).

Statistical analysis and verification 
of the experiments

ANOVA and RSM were performed using 
StatSoft Statistica for Windows, ver. 10 pro-
gramme. The model was obtained for each de-
pendent variable (or response) where factors 
were rejected when their significance level was 
less than p < 0.05. Post-hoc Tukey’s honest signifi-
cant difference (HSD) test at a significance level 
of p < 0.05 were calculated to show significant 
differences between different samples. The same 
programme was used for generation of graphs and 
contour plots. The graphs of the responses with 
significant parameters were super-imposed to de-
termine optimum drying conditions and were plot-
ted on optimization graphics.

RESULTS AND DISCUSSION

After relatively short time (15 min), significant 
weight and volume gains were observed for both 
treatments. Process temperature was the most sig-
nificant variable affecting final dry matter content 

and rehydration kinetics. At the end of rehydra-
tion process, conducted at 20 °C and 40 °C, a sig-
nificant recovery in mass was observed, although 
the values were lower than for fresh meat. As the 
result of OT, the ruptured and shrunken meat 
tissue had a reduced own ability to absorb water. 
Rehydration percentage at 20 °C for solution 1 was 
24.1%, and for solution 2 was 26.2%. However, re-
hydration at 40 °C brought a higher mass gain in 
case of solution 1 (11.3%) compared to solution 2 
(7.9%). Results obtained at 60 °C were negative, 
which means that rehydration did not take place. 
The best conditions for meat rehydration were 
obtained using a temperature of 20 °C and time 
of 60 min. Volume of samples increased almost 
linearly with the weight increment.

ANOVA and RSM results
The ANOVA study was conducted prior to 

ANN to determine the influence of process 
variables (temperature and treatment time) on 
R and dV of pork meat cubes in solution 1 and 
2. The experimental data used for the analy-
sis were derived from the experimental design. 
Tab. 1 shows the response variables as a function 
of independent variables for the analysis. ANO-
VA table (Tab. 2) shows the calculation regard-
ing the developed SOP models, Eq. 3, when the 
experimental data were fitted to a response sur-
face, and it exhibits the significant independent 
variables and their interactions. It also shows the 
significant effects of independent variables on 
the responses and which of the responses were 
significantly affected by the varying treatment 
combinations.

The calculation of R for samples treated by 
solution 1 was significantly affected by all process 
variables, temperature and treatment time, at 
p < 0.05 level. It was noticed that the calculation of 
R was most affected by linear term of processing 
temperature in SOP model. The impact of tem-
perature was dominant, as seen by temperature’s 
quadratic term, and also by the cross-product 
term, which were more influential than both 
linear and quadratic term of rehydration time in 
SOP model calculation. The quadratic term of 
rehydration time in SOP model was significant at 
p < 0.10 level. The calculation of R for meat sam-
ples treated by solution 2 was mostly affected by 
linear term of processing temperature (significant 
at p < 0.05 level). The quadratic terms for both 
temperature and rehydration time were found sta-
tistically insignificant, while the interchange term 
was found more influential than the linear term of 
rehydration time, in SOP model calculation. Both 
of these terms were significant at p < 0.05 level.

Tab. 2. ANOVA table, showing sum of squares.

Term DF R1 R2 dV1 dV2

T 1 1 543.0 * 1 680.3 * 26.9 ** 0.03 ns

t 1 39.4 * 62.0 * 5.1 ns 49.7 **

T2 1 55.8 * 0.5 ns 160.4 * 163.5 *

t2 1 9.1 ** 2.2 ns 2.6 ns 138.7 *

T × t 1 66.2 * 125.0 * 357.3 * 158.0 *

Error 6 14.3 ns 5.3 ns 30.5 ns 8.3 ns

r2 99.2 99.2 91.5 93.7

T – temperature, t – immersion time, r2 – coefficient of deter-
mination, DF – degrees of freedom, R1 – rehydration of meat 
treated in solution 1, R2 – rehydration of meat treated in solu-
tion 2, dV1 – volume change of meat treated in solution 1, 
dV2 – volume change of meat treated in solution 2.
* – significant at p < 0.05 level, ** – significant at p < 0.10 
level, ns – not significant, 
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The calculation of dV for samples treated in so-
lution 1 were significantly affected by interchange 
term and by quadratic term of temperature in SOP 
model, significantly at p < 0.10 level, while linear 
term affected dV calculation statistically signifi-
cantly at p < 0.10 level, in SOP model calculation. 
All other sources were statistically insignificant. 
The temperature terms were found dominant, but 
mostly nonlinearly, which can be observed on the 
contour plots. The calculation of dV for samples 
treated in solution 2 was most affected by linear 
and quadratic terms of processing time in SOP 
model (significant at p < 0.05 and p < 0.10 level, 
respectively). The quadratic term of temperature 
and cross product term were found statistically sig-
nificant at p < 0.05 level, while all other terms were 
found statistically insignificant, in SOP model cal-
culation.

The analysis revealed that the linear terms for 
R contributed substantially in all cases to gener-
ate a significant SOP model. The SOP models 

for all variables were found to be statistically 
significant and the response surfaces were fitted 
to these models. The linear terms of SOP model 
were found significant, at p < 0.05 level, and 
their influence was the most important in model 
calculation. On the other hand, non-linear terms 
in the SOP model for volume changes were 
found dominant, which was due to complexity of 
the system and due to its diffusive nature. Also 
shown in Tab. 2 is the residual variance, where 
the lack of fit variation represents other con-
tributions except for the first and second order 
terms. All SOP models had insignificant lack-of-
fit tests, which means that all the models repre-
sented the data satisfactorily. Also, a high r2 was 
indicative that the variation was accounted, and 
that the data fitted satisfactorily to the proposed 
SOP model. The r2 values for R of the samples 
treated with solution 1 (99.171) and R for those 
treated with solution 2 (99.220) were very satis-
factory and showed good fitting of the model to 

Fig. 1. Contour plots for rehydration and volume changes of pork meat cubes 
as a function of temperature and immersion time.

A – rehydration of meat treated in sugar beet molasses solution (R1), B – rehydration of meat treated in saccharose-NaCl solu-
tion (R2), C – volume changes of meat treated in sugar beet molasses solution (dV1), D – volume changes of meat treated in 
saccharose-NaCl solution (dV2).
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experimental results (Tab. 2). Volume changes 
of the samples treated with solution 1 (91.467) 
and the samples treated with solution 2 (93.665) 
showed less confident model results, but also 
showed good fitting of the model and the experi-
mental results. Maximum R was achieved when 
processing time rose (60 min), while temperature 
was relatively low (20 °C), for meat osmotically 
treated by both solution 1 and 2, while volume 
changes seemed to gain their maximum with 
a mild temperature and the average processing 
time (40 °C and 30 min). It seems that the low re-
hydration temperature (20 °C) and long process-
ing time (60 min) could produce a processing op-
timum, concerning low energy consumption, with 
long processing time, but also good R and increase 
of sample volume. High temperature should be 
avoided, due to production expenses, high energy 
cost, and also degradation of pork meat cubes 
structure, which were unacceptable, as seen from 
Tab. 1 (degradation of meat cubes structure, no-
ticed as negative R, at higher temperatures).

The contour plots developed from the approxi-
mating rehydration and volume change functions 
are shown in Fig. 1. Both rehydration contour 
plots showed a rising ridge configuration, with its 
value maximized at the upper left corner of the 

plots, with the increase in treatment time, and with 
minimal processing temperature applied. Volume 
changes for all samples investigated showed their 
maxima at the central area of both plots.

Independent experiments were performed at 
optimal conditions to determine the adequacy of 
the SOP models. Predicted and observed respons-
es at optimum conditions, with  standard devia-
tions and coefficients of variation are presented in 
Tab. 3. The goodness of fit between experimental 
measurements and model-calculated outputs, rep-
resented as ANN performance (sum of r2 between 
measured and calculated R and dV for each ANN), 
and also the sum of SOS between measured and 
calculated R and dV, during training and testing 
steps, are shown in Tab. 4. As shown in the pre-
vious ANOVA tables, the predicted values were 
comparable to the actual values in the experiment. 
Very good coefficients of variation (CV) of less 
than 10% for all process variables were calculated. 
CV values higher than 15% for response variables 
would indicate a statistically minor significance of 
the SOP model [36]. The low CV values of the re-
sponse variables for R indicated the adequacy of 
our models.

Processing elements in hidden layer
The optimum number of hidden nodes was 

chosen upon minimizing the difference between 
predicted ANN values and desired outputs, using 
SOS during testing as performance indicator. Re-
sults of R and dV during testing with four to eight 
processing elements in the hidden layer are pre-
sented in Tab. 4, which shows r2 between experi-
mentally measured and ANN outputs, for training 
and testing steps, for each output variable (R and 
dV). Used MLP are marked according to StatSoft 
Statistica’s notation, MLP followed by number of 
inputs, number of neurons in the hidden layer, and 
the number of outputs. According to ANN per-
formance, from Tab. 4 (sum of r2 for all variables 
in one ANN), it was noticed that the optimum 

Tab. 3. Predicted and observed responses 
at optimum conditions.

Response R1 [%] R2 [%] dV1 [%] dV2 [%]

Predicted 24.1 26.2 14.9 9.6

Observed 24.1 26.5 14.6 9.4

SD 0.3 0.5 0.3 0.6

CV 1.5 2.0 2.3 6.6

R1 – rehydration of meat treated in solution 1, R2 – rehydra-
tion of meat treated in solution 2, dV1 – volume change of 
meat treated in solution 1, dV2 – volume change of meat 
treated in solution 2, SD – standard deviation, CV – coef-
ficient of variation.

Tab. 4. Artificial neural network summary.

No. Network name
ANN performance (r2) SOS (error) Activation function

Training Testing Training Testing Hidden Output

1 MLP 2-6-4 0.987 0.988 0.006 0.014 Logistic Hyperbolic tangent

2 MLP 2-8-4 0.967 0.953 0.024 0.010 Logistic Hyperbolic tangent

3 MLP 2-8-4 0.943 0.947 0.041 0.032 Exponential Identity

4 MLP 2-4-4 0.921 0.897 0.149 0.070 Gaussian Identity

5 MLP 2-6-4 0.979 0.981 0.024 0.030 Logistic Hyperbolic tangent

MLP – multi-layer perceptron (number of inputs - number of neurons in the hidden layer - the number of outputs), ANN – artificial 
neural network, r2 – coefficient of determination, SOS – sum of squares.
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number of neurons in the hidden layer was six 
(network MLP 2-6-4, No. 1), when high values of 
r2 and also low values of SOS were obtained. Also 
can be noticed that a greater number of processing 
elements increased the structure complexity and 
did not improve the network behaviour (during 
testing step MLP 2-6-4, No. 1, gained r2 = 0.987, 
SOS = 0.006, while MLP 2-8-4, No. 2, gained r2 = 
0.967 and SOS = 0.024, MLP 2-8-4, No. 3, gained 
r2 = 0.943 and SOS = 0.041). Also, ANN with the 
same number of hidden neurons, and the same 
hidden layer activation functions, like No. 1 and 
No. 5, from Tab. 4, did not necessarily produce the 
same result, because the input data were randomly 
divided into training data and testing data groups, 
as mentioned before. The developed SOP model 
gained r2 values slightly lower than those associat-
ed with the ANN model. This is in agreement with 
findings of other authors [32, 35]. Although ANN 
models are more complex (30–46 weights-bias for 
R and dV models, for five different ANN) than 
SOP models (4 weights-bias for R and dV models), 
ANN models perform better because of the high 
nonlinearity of the developed system.

Simulation and optimization
Process outputs R and dV, for samples treated 

in solutions 1 or 2 (R1, R2, dV1, dV2), could be cal-
culated by Eq. 6, using matrices W1 and B1, and 
matrices W2 and B2, which represented the incor-
porating coefficients associated with the hidden 
layer (both weights and biases). Output variables 
were calculated by applying transfer functions 

f1 and f2 (from Tab. 4) in the hidden and out-
put layers, respectively, onto the matrix of input 
variables X using Eq. 6. The algebraic system of 
equations was easily evaluated in a spreadsheet to 
predict R and dV, for samples of meat treated in 
solutions 1 or 2, with shown calculated weights and 
biases matrices.

 (6)

ANN models used to simulate experimental 
rehydration kinetics were able to predict reason-
ably well all process outputs for a broad range of 
the process variables, shown in Tab. 1. Fig. 2 shows 
simulated results in comparison with experimen-
tal data, for the best neural network (MLP 2-6-4, 
No. 1). Tab. 4 shows ANN performance data, ex-
pressed as the sum of r2 and sum of SOS, for all 
variables in one ANN. Tab. 5 shows r2 for each 
variable (R for solution 1 and 2, and dV for solu-
tion 1 and 2) during training and testing steps. The 
predicted values were very close to the desired 
values in most cases, although dV prediction was 
not as good as that for R in terms of r2 value. SOS 
obtained with ANN models were of the same or-
der of magnitude as experimental errors for R and 
dV reported in the literature [37, 38].

Mean and standard deviation of residuals 
were also analysed. The means of residuals were 
in the range of 0.00–0.02 for R and 0.08–1.06 for 
dV, while standard deviations were in the range 

Fig. 2. Comparison of experimentally measured 
and predicted rehydration percentage and volume 
changes.

R1 – rehydration of meat treated in sugar beet molasses solu-
tion, R2 – rehydration of meat treated in saccharose-NaCl 
solution, dV1 – volume changes of meat treated in sugar beet 
molasses solution, dV2 – volume changes of meat treated in 
saccharose-NaCl solution.
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0.02–0.04 for R and 0.28–0.64 for dV. These re-
sults showed a good approximation to a normal 
distribution around zero with a probability of 95% 
(2·SD) to find residuals below 0.04–0.08 for R 
and 0.02–0.04 for dV, which means a good gene-
ralization ability of ANN model for the range of 
experimental values of R and dV shown in Tab. 1. 

Tab. 2, 4 and 5 show that ANN gained better re-
sults than the SOP model, regarding the r2-based 
comparison between experimental and calculated 
outputs. Values of r2 between experimental and 
SOP model outputs, for R for solution 1 and 2, and 
dV for solution 1 and 2, were: 0.992, 0.992, 0.915 
and 0.937, respectively, while the best ANN model 
(MLP 2-6-4) gained: 0.992, 0.995, 0.976 and 0.988, 
respectively, during the testing period.

The ANN model allowed extrapolation by ex-
tending the range of process parameters (inputs), 
but this model was not compared with experimen-
tal values beyond the range of variables used in its 
development due to the lack of experimental in-
formation.

Sensitivity analysis
In order to assess the effect of each input 

variable changes on the output variables, sensi-
tivity analysis was performed. The white noise 
signals were incorporated by adding or subtract-
ing a Gaussian error of SD = 5% and zero mean 
with 98% probability, i. e. 2.576 × SD to each input 
variable [39]. A full central composite experimen-
tal design [29] was used for testing the best per-
forming ANN model, which seemed to be MLP 
2-6-4, No. 1 (according to Tab. 4). Tab. 6 shows the 
final design with 9 combinations. The complete 
database (12 points from Tab. 1) was used for a to-
tal of 12 × 9 = 108 cases. SOS was calculated and 
compared with the basic case, which comprised 
unperturbed points (i.e. without applying any 
noise).

Fig. 3 shows the influence of the input variables 
on R and dV, for meat samples treated with solu-
tion 1 and 2 , according to sum of squares, calcu-
lated by comparing model predicted values with 
and without white noise signal applied, according 
to Tab. 5. All output variables were most affected 
by processing time, while the impact of tempera-
ture was also notable. 

Tab. 5. Coefficients of determination between experimentally measured 
and artificial neural network outputs during training and testing steps.

ANN name
Training Testing

R1 R2 dV1 dV2 R1 R2 dV1 dV2

MLP 2-6-4 0.992 0.992 0.983 0.982 0.992 0.995 0.976 0.988

MLP 2-8-4 0.987 0.988 0.946 0.947 0.990 0.988 0.954 0.879

MLP 2-8-4 0.969 0.980 0.911 0.912 0.994 0.996 0.935 0.864

MLP 2-4-4 0.861 0.897 0.943 0.982 0.886 0.845 0.924 0.934

MLP 2-6-4 0.991 0.991 0.980 0.953 0.980 0.982 0.978 0.984

ANN – artificial neural network, MLP – multi-layer perceptron, R1 – rehydration of meat treated in solution 1, R2 – rehydration of 
meat treated in solution 2, dV1 – volume change of meat treated in solution 1, dV2 – volume change of meat treated in solution 2. 

Tab. 6. Central composite design 
for sensitivity analysis.

Assay No. Temperature T [°C] Immersion time t [h]

1 0 0
2 0 –1
3 0 +1
4 –1 0
5 +1 0
6 –1 –1
7 –1 +1
8 +1 –1
9 +1 +1

Fig. 3. Sensitivity analysis.

R1 – rehydration of meat treated in solution 1, R2 – rehydra-
tion of meat treated in solution 2, dV1 – volume change of 
meat treated in solution 1, dV2 – volume change of meat 
treated in solution 2.
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CONCLUSION

Knowledge of physicochemical properties of 
food materials is important for an adequate design 
of food processing as well as for the control and 
improvement of the quality of the final product. 
Food shape is one of the main quality attributes 
perceived by the consumer. Drying process not 
only increases dV but also may cause changes in 
shape. The maximum rehydration percentage was 
observed for 20 °C and 60 min (24.1% and 26.2%, 
for two applied solutions), while the maximum 
dV was observed at 40 °C and 30 min (16.1% and 
22.6%, for two applied solutions). 

The developed second order polynomial model 
was used to numerically express R and dV of pork 
meat samples after rehydration, osmotically treat-
ed in molasses and saccharose-NaCl solution. 
Samples dehydrated in molasses solution were af-
fected by temperature and treatment time during 
the rehydration process, while samples treated in 
saccharose-NaCl solution were most affected by 
temperature. For both cases of rehydration in two 
solutions, R was most effective with the time in-
crease at relatively low temperatures, while dV had 
its maximum at mild temperatures and at relative-
ly low processing time. ANN-based model was de-
veloped for prediction of R and dV of rehydration 
of pork meat cubes for a wide range of experimen-
tal conditions. The model was able to successfully 
predict experimental kinetics, with ease of imple-
menting it for design and control of rehydration 
processes, and also the effective use for predictive 
modelling and optimization. As compared to SOP 
models, ANN model yielded a better fit of experi-
mental data. Taking into account that a consider-
able amount and wide variety of data were used in 
the present work to obtain the ANN model, and 
considering that the model turned out to yield 
a sufficiently good representation of the data, this 
ANN model can be useful in practice for the de-
sign and control of rehydration processes for pork 
meat cubes. 
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