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Polycyclic aromatic hydrocarbons (PAH) in-
clude the largest class of known environmental 
carcinogenic compounds. Some of them, even 
though not carcinogenic, may act as synergists 
[1]. PAH are extensively found in various foods as 
a result of technological procedures such as grill-
ing, drying, frying and mainly smoking [2–3]. An 
environmentally relevant aspect of PAH toxicity is 
that it can be increased by solar radiation [4–8]. As 
known, PAH contain two or more conjugated ben-
zene rings that facilitate the absorption of ultra-
violet A (UVA) radiation (320–400 nm), ultravio-
let B (UVB) radiation (290–320 nm) and, in some 
instances, visible light (400–700 nm). This leads to 
photoactivation of PAH and increase their toxic-
ity via the production of singlet oxygen and pho-
tomodification of original molecules, which results 
in the formation of so-called oxy-PAH products 
[5, 8–12]. Many of the photoproducts generated 
through environmental photomodification exhibit 
greater toxicity than the parent PAH, and have 
the potential to generate toxic compounds that 
could negatively impact living systems and hu-
man health. On the other hand, photodegradation 

is an important transformation pathway for most 
PAH, because this process preferentially attacks 
the same tertiary carbon atoms that tend to block 
biodegradation [13]. As already proven, PAH de-
posited on the surface of smoked food are partial-
ly oxidized due to the presence of light and oxygen 
[14–15]. However, the influence of light and anti-
oxidants on PAH has not been studied so far. So, 
the aim of this work was to study the behaviour of 
benzo[a]pyrene (BaP) as a representative PAH in 
non-polar liquid media at different wavelengths 
and in the presence of food antioxidants such as 
butylhydroxytoluene and guaiacol.

MATERIALS AND METHODS

Chemicals
Benzo[a]pyrene (BaP) of analytical grade 

was purchased from Supelco (Bellefonte, Penn-
sylvania, USA) in a solid state. Solvent n-hexane 
of analytical grade was purchased from Merck 
(Darmstadt, Germany). The solvent was rectified 
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logies, Palo Alto, California, USA) using isocratic 
elution with methanol at a flow rate of 0.5 ml·min-1 
at 35 °C. Fluorescence detector operated at exci-
tation wavelength of 300 nm and emission wave-
length of 410 nm.

RESULTS AND DISCUSSION

Photolysis of BaP was studied in n-hexane as 
a non-polar medium since PAH, in general, are 
liphophilic compounds and tend to migrate and 
concentrate in liphophilic foods such as fats, oils 
or adipose tissues. As shown in Fig. 1 and Fig. 2, 
the dependences of concentrations on time were 
exponential which is typical for first-order reac-
tions. Indeed, this presumption was proven on the 
basis of a calculation of the reaction order using 
the equations 1, 2 and 3.

 (1)

 

for n  1 (2)

 for n = 1 (3)

where c0 is initial concentration of BaP, c is the 
concentration in given time, t is duration of the 
experiment, n is reaction order and k is rate con-
stant. 

The computation itself was performed by pro-
gramme Origin Pro 7.0 (OriginLab, Northampton, 
Massachusetts, USA). The results are listed in 
Tab. 1. The calculated data show that the oxida-

just before use in a distillation apparatus. Antioxi-
dants 2,6-di-tert-butyl-4-methylphenol (BHT) and 
o-methoxyphenol (guaiacol) were purchased from 
Sigma-Aldrich (St. Louis, Missouri, USA).

Photolysis experiments
The photolysis experiments were carried out in 

a 75 ml glass reactor, immersed in a thermostatic 
bath (Photochemical Reactors, Reading, United 
Kingdom). The reactor was equipped with a cen-
tral inlet at its top to place a quartz immersion for 
6 watt low pressure UV lamp ( = 254 nm) and 
xenone lamp ( = 365 nm).

At first, degradation of BaP in n-hexane was 
studied at  = 254 nm at initial concentrations of 
50, 100 and 150 μg·l-1. The samples for analysis 
were taken at defined time intervals and analysed 
by HPLC. Then, the same experiments were car-
ried out at  = 365 nm. Finally, the influence of 
antioxidants on BaP decomposition was studied. 
Measurements were realized at a BaP concentra-
tion of 100 μg·l-1 in n-hexane at 365 nm and at 
two different concentrations of antioxidants, i.e. 
100 mg·l-1 and 1 g·l-1 for BHT and guaiacol, re-
spectively.

HPLC
HPLC analyses were carried out using the 

Shimadzu equipment (Kyoto, Japan) consisting 
of solvent delivery module LC-20AD, autosam-
pler SIL-20A, degasser DGU-20A5, column oven 
CTO-20A, communication bus module CBM-20A, 
diode array detector SPD-M20A, and fluores-
cence detector RF-10AXL. The analytical separa-
tion was performed on Zorbax Eclipse XDB-C18 
column (50 mm × 4.6 mm, 1.8 μm; Agilent Techno-

Fig. 1. Course of BaP decomposition in n-hexane 
at 254 nm at the initial concentration of 50, 100 
and 150 μg·l-1.

Fig. 2. Course of BaP decomposition in n-hexane 
at 365 nm for at the initial concentration of 50, 100 
and 150 μg·l-1.



 Factors affecting the rate of benzo[a]pyrene decomposition in non-polar system – a model study

 167

tion of BaP can be regarded as first-order reaction 
and confirm the exponential dependence of con-
centration on time. Very important factor affecting 
the rate of BaP decomposition is the irradiation 
wavelength. Comparing the calculated data of rate 
constants and half-lives, it was found that the de-
composition of BaP at 365 nm proceeds 15.3 times 
more rapidly in comparison with the decomposi-
tion at 254 nm. The rate constants and half-lives 
are listed in Tab. 2. The effect of the addition of 
food antioxidants to BaP was very interesting. In 

general, these compounds protect food compo-
nents against oxidation processes after addition to 
prolong original properties of foods. Surprisingly, 
both tested antioxidants i.e. BHT and guaiacol ac-
celerated BaP oxidation, as shown in Figs. 3 and 4. 
As the rate constant and half-lives show, BHT ac-
celerated decomposition of BaP by 1.17 times and 
of guaiacol even 1.45 times.

CONCLUSIONS

Rate of decomposition of BaP strongly de-
pends on light wavelength, and it is 15.3 times 
faster at 365 nm in comparison to the decomposi-
tion at 254 nm. Food antioxidants have accelerat-
ing effect on the rate of BaP decomposition where 
BHT decimposed 1.17 times and guaiacol even 
1.45 times faster. The study of components formed 
during BaP oxidation in the presence of antioxi-
dants will be the subject of further research. These 
findings may represent a basis for a new approach 
to decrease PAH content in foods, where their 
presence is due to the applied production techno-
logy.
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Tab. 1. The values of the reaction order of BaP 
decomposition in n-hexane at 254 nm and 365 nm.

Concentration of BaP
[μg.l-1]

Reaction order n

254 nm 365 nm

50 0.99 1.00

100 1.18 1.00

150 1.15 1.00

Tab. 2. The values of rate constants and half-lifes of 
BaP decomposition in n-hexane at a wavelength of 
365 nm with and without the addition of antioxidants.

k
[min-1]

1/2
[min]

Conditions

0.00205 338.12 n-hexane, 254 nm

0.03143 22.05 n-hexane, 365 nm

0.04570 15.17
n-hexane + 100 mg·l-1 guaiacol, 
365 nm

0.03699 18.74
n-hexane +100 mg·l-1 BHT, 
365 nm

Fig. 3. BaP decomposition in n-hexane at 365 nm 
at the initial concentration of BaP of 100 μg·l-1 alone 
and in the presence of 100 mg·l-1 BHT.

Fig. 4. BaP decomposition in n-hexane at 365 nm at 
the initial concentration of BaP of 100 μg·l-1 alone and 
in the presence of 100 mg·l-1 guaiacol.
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